
tellurium Documentation
Release 2.1.5

sys-bio

Jul 25, 2020

Contents

1 Installation and Front-ends 3
1.1 Installation Options . 3

2 Quick Start 7
2.1 Simple Example . 7
2.2 More Complex Example . 8

3 Walkthrough 11
3.1 Notebook Walkthrough . 11
3.2 Advanced Topics . 21
3.3 Notebook Troubleshooting . 24
3.4 Further Reading . 24
3.5 IDE Walkthrough . 27
3.6 Advanced Topics on Tellurium Spyder . 31
3.7 Tellurium Spyder Troubleshooting . 31
3.8 Further Reading . 31
3.9 Additional Resources for Tellurium . 32
3.10 Learning Python . 32

4 Usage Examples 33
4.1 Basics . 33
4.2 Models & Model Building . 39
4.3 Simulation and Analysis Methods . 44
4.4 SED-ML . 47
4.5 COMBINE & Inline OMEX . 54
4.6 Modeling Case Studies . 71
4.7 Miscellaneous . 88

5 Antimony Reference 89
5.1 Background . 89
5.2 Change Log . 90
5.3 Contents . 90
5.4 Introduction & Basics . 92
5.5 Examples . 93
5.6 Simulating Models . 98
5.7 Language Reference . 102

i

6 Parameter Scan 127
6.1 Loading a Model . 127
6.2 Class Methods . 128
6.3 Example . 129
6.4 Properties . 133
6.5 SteadyStateScan . 134

7 Tellurium Methods 137
7.1 Installing Packages . 137
7.2 Utility Methods . 138
7.3 Model Loading . 144
7.4 Interconversion Utilities . 146
7.5 Export Utilities . 148
7.6 Stochastic Simulation . 158
7.7 Math . 162
7.8 ODE Extraction Methods . 163
7.9 Plotting . 163
7.10 Model Reset . 180
7.11 jarnac Short-cuts . 183
7.12 Test Models . 184
7.13 Running external tools . 186
7.14 Model Methods . 187

8 API 191

9 Appendix 197
9.1 Source Code Repositories . 197
9.2 License . 197
9.3 Contact . 198
9.4 Funding . 198
9.5 Acknowledgments . 198

10 Indices and tables 199

Index 201

ii

tellurium Documentation, Release 2.1.5

Model, simulate, and analyse biochemical systems using a single tool. To view the documentation on libRoadRunner,
please go here.

Contents:

Contents 1

https://sys-bio.github.io/roadrunner/python_docs/index.html

tellurium Documentation, Release 2.1.5

2 Contents

CHAPTER 1

Installation and Front-ends

1.1 Installation Options

Tellurium has several front-ends, and can also be installed as a collection of pip packages. We recommend a front-end
for end-users who wish to use Tellurium for biological modeling, and the pip packages for developers of other software
which uses or incorporates Tellurium.

1.1.1 Front-end 1: Tellurium Notebook

Tellurium’s notebook front-end mixes code and narrative in a flowing, visual style. The Tellurium notebook will
be familiar to users of Jupyter, Mathematica, and SAGE. However, unlike Jupyter, Tellurium notebook comes pre-
packaged as an app for Windows, Mac, and Linux and does not require any command line installation. This front-end
is based on the nteract project.

• Front-end: Tellurium Notebook

• Supported platforms:

• Python version: 3.6, 64-bit

• Download: here

1.1.2 Front-end 2: Tellurium IDE

User who are more familiar with MATLAB may prefer Tellurium’s IDE interface, which is based on popular program-
ming tools (Visual Studio, etc.). This front-end is based on the Spyder project. Due to stability issues, we recommend
Mac users use the Tellurium notebook front-end instead.

• Front-end: Tellurium IDE

• Supported platforms: (no Mac updates)

3

https://github.com/nteract/nteract
https://github.com/sys-bio/tellurium#windows
https://github.com/sys-bio/tellurium#mac-osx
https://github.com/sys-bio/tellurium#redhat
https://github.com/sys-bio/tellurium#front-end-1-tellurium-notebook
https://www.spyder-ide.org/
https://github.com/sys-bio/tellurium#windows-1
https://github.com/sys-bio/tellurium#mac-osx-1

tellurium Documentation, Release 2.1.5

Fig. 1: Tellurium notebook offers an environment similar to Jupyter

4 Chapter 1. Installation and Front-ends

https://github.com/sys-bio/tellurium#front-end-1-tellurium-notebook

tellurium Documentation, Release 2.1.5

• Python version: 2.7, 64-bit

• Download: here

Fig. 2: Tellurium IDE features a programmer-centric interface similar to MATLAB

1.1.3 PyPI Packages

Tellurium can be installed using the command line tool pip.

• No front-end

• Supported platforms:

• Python version: 2.7, 3.4, 3.5, 3.6

$ pip install tellurium

1.1. Installation Options 5

https://github.com/sys-bio/tellurium#front-end-2-tellurium-ide
https://github.com/sys-bio/tellurium#front-end-2-tellurium-ide

tellurium Documentation, Release 2.1.5

1.1.4 Supported Python Versions

The Tellurium PyPI packages support 64-bit Python versions 2.7, 3.4, 3.5, and 3.6 for Windows, Mac, and Linux. The
notebook viewer comes with Python 3.6 (64-bit) and the IDE comes with Python 2.7 (32-bit). If you need support for
a Python version not already covered, please file an issue.

6 Chapter 1. Installation and Front-ends

https://github.com/sys-bio/tellurium/issues

CHAPTER 2

Quick Start

To get started using Tellurium, download one of the front-ends. Then, follow the examples below to get an idea of
how to load and simulate models.

2.1 Simple Example

This shows how to set up a simple model in Tellurium and solve it as an ODE. Tellurium uses a human-readable
representation of SBML models called Antimony. The Antimony code for this example contains a single reaction
with associated kinetics. After creating the Antimony string, use the loada function to load it into the RoadRunner
simulator. A RoadRunner instance has a method simulate that can be used to run timecourse simulations of a model,
as shown below.

import tellurium as te
r = te.loada('S1 -> S2; k1*S1; k1 = 0.1; S1 = 10')
r.simulate(0, 50, 100)
r.plot()

7

front-ends
http://sys-bio.github.io/roadrunner/python_docs/index.html
http://sys-bio.github.io/roadrunner/python_docs/index.html
http://sys-bio.github.io/roadrunner/python_docs/using_roadrunner.html#running-simulations

tellurium Documentation, Release 2.1.5

2.2 More Complex Example

Tellurium can also handle stochastic models. This example shows how to select Tellurium’s stochastic solver. The
underlying simulation engine used by Tellurium implements a Gibson direct method for simulating this model.

import tellurium as te
import numpy as np

r = te.loada('''
J1: S1 -> S2; k1*S1;
J2: S2 -> S3; k2*S2 - k3*S3
J2_1: S2 -> S3; k2*S2
J2_2: S3 -> S2; k3*S3;
J3: S3 -> S4; k4*S3;

k1 = 0.1; k2 = 0.5; k3 = 0.5; k4 = 0.5;
S1 = 100;

''')

use a stochastic solver
r.integrator = 'gillespie'
r.integrator.seed = 1234
selections specifies the output variables in a simulation
selections = ['time'] + r.getBoundarySpeciesIds() + r.getFloatingSpeciesIds()
r.integrator.variable_step_size = False

run repeated simulation
Ncol = len(r.selections)
Nsim = 30
points = 101
s_sum = np.zeros(shape=[points, Ncol])
for k in range(Nsim):

(continues on next page)

8 Chapter 2. Quick Start

tellurium Documentation, Release 2.1.5

(continued from previous page)

r.resetToOrigin()
s = r.simulate(0, 50, points, selections=selections)
s_sum += s
use show=False to add traces to the current plot
instead of starting a new one, equivalent to MATLAB hold on
r.plot(s, alpha=0.5, show=False)

add mean curve, legend, show everything and set labels, titels, ...
fig = te.plot(s[:,0], s_sum[:,1:]/Nsim, names=[x + ' (mean)' for x in selections[1:]],
→˓ title="Stochastic simulation", xtitle="time", ytitle="concentration")

2.2. More Complex Example 9

tellurium Documentation, Release 2.1.5

10 Chapter 2. Quick Start

CHAPTER 3

Walkthrough

3.1 Notebook Walkthrough

If you have not already done so, download and install the Tellurium notebook front-end for your platform (Windows,
Mac, and Linux supported).

3.1.1 Basics

The notebook environment allows you to mix Python code, narrative, and exchangeable standards for models and
simulations. When you first open the notebook, you will have a single Python cell. You can type Python code into this
cell. To run the code:

• Press shift+Enter,

• Click the play button at the upper right of the cell, or

• Choose Cell -> Run All from the menu.

The output of running the cell will be shown beneath the cell.

Fig. 1: Output of running a Python cell

11

https://github.com/sys-bio/tellurium#front-end-1-tellurium-notebook

tellurium Documentation, Release 2.1.5

3.1.2 Creating Cells

You can add new cells by moving your cursor past the last cell in the notebook. You should see a menu with three
options: New, Import, and Merge. Choose New to create a new cell. You will see four choices:

• New Python Cell

• New Markdown Cell (for creating narrative)

• New Model Cell (for SBML/Antimony models)

• New OMEX Cell (for COMBINE archives)

For now, select New Markdown Cell. Markdown cells allow you to place formatted text and hyperlinks in your
notebook. For a review of Markdown syntax, please see this reference.

Fig. 2: Creating a new Markdown cell

3.1.3 SBML Cells

Unlike vanilla Jupyter, Tellurium allows you embed a human-readable representation of SBML directly in your note-
book. To begin, first download the SBML for the represillator circuit from BioModels. Then, in the Tellurium
notebook viewer, move your cursor past the last cell in the notebook and select Import -> Import SBML....

Navigate to the BIOMD0000000012.xml file that you downloaded and select it. A new cell will be created in
the notebook with a human-readable representation of this model. The human-readable syntax is called Antimony,
and you can find an extensive reference on the syntax here. For now, just change the name of the model from
BIOMD0000000012 to repressilator.

Now, run the cell. You should see confirmation that the model was correctly loaded and is available under the variable
repressilator in Python.

After the SBML cell, create a Python cell with the following content:

repressilator.reset() # in case you run the cell again
repressilator.simulate(0,1000,1000) # simulate from time 0 to 1000 with 1000 points
repressilator.plot() # plot the simulation

After you run this cell, you should see the following simulation plot:

12 Chapter 3. Walkthrough

https://guides.github.com/features/mastering-markdown/
https://www.ebi.ac.uk/biomodels-main/download?mid=BIOMD0000000012
http://tellurium.readthedocs.io/en/latest/antimony.html

tellurium Documentation, Release 2.1.5

Fig. 3: Editing a Markdown cell

3.1. Notebook Walkthrough 13

tellurium Documentation, Release 2.1.5

Fig. 4: Importing an SBML model

14 Chapter 3. Walkthrough

tellurium Documentation, Release 2.1.5

Fig. 5: Changing the name of the model

Fig. 6: Running the SBML cell

3.1. Notebook Walkthrough 15

tellurium Documentation, Release 2.1.5

Fig. 7: Simulating the SBML model

16 Chapter 3. Walkthrough

tellurium Documentation, Release 2.1.5

The repressilator variable is actually an instance of the RoadRunner simulator. Please see the official documen-
tation for libRoadRunner for an extensive list of methods and options that can be used with RoadRunner.

You can also use ctrl+Space to open the auto-completion menu for a variable defined in a previous cell. This also
goes for variables such as repressilator defined in SBML cells.

Fig. 8: Showing all auto-completions for the repressilator RoadRunner instance

3.1.4 COMBINE Archive Cells

Another name for COMBINE archives is the Open Modeling and EXchange format (OMEX), which shows up in
various Tellurium menus and functions. COMBINE archives are containers for various community standards in sys-
tems biology. They can contain SBML, SED-ML, CellML, and NeuroML. Tellurium supports importing COMBINE
archives containing SBML and SED-ML.

To begin, download this COMBINE archive example (originally from the SED-ML Web Tools). In the Tellurium
notebook viewer, move the mouse past the last cell until the Cell Creator Bar appears and choose Import -> Import
COMBINE archive (OMEX)....

This archive contains an SBML model and a SED-ML simulation. The simulation has a forcing function (representing
external input to the system) in the form of a pulse. After running this cell, you should see the following output:

As a demo of Tellurium’s COMBINE archive editing functionality, we can change the duration of the pulse. Change
the following line:

task1 = repeat task0 for local.index in uniform(0, 10, 100), local.current = index ->
→˓piecewise(8, index < 1, 0.1, (index >= 4) && (index < 6), 8), model1.J0_v0 =
→˓current : current

3.1. Notebook Walkthrough 17

http://libroadrunner.org/
http://sys-bio.github.io/roadrunner/python_docs/index.html
http://sys-bio.github.io/roadrunner/python_docs/index.html
http://sbml.org/Main_Page
https://sed-ml.github.io/
https://www.cellml.org/
https://www.neuroml.org/
https://github.com/0u812/tellurium-combine-archive-test-cases/raw/master/swt/pulse_experiment.omex
http://sysbioapps.dyndns.org/SED-ML_Web_Tools

tellurium Documentation, Release 2.1.5

Fig. 9: Running the OMEX cell

18 Chapter 3. Walkthrough

tellurium Documentation, Release 2.1.5

To:

task1 = repeat task0 for local.index in uniform(0, 10, 100), local.current = index ->
→˓piecewise(8, index < 1, 0.1, (index >= 4) && (index < 10), 8), model1.J0_v0 =
→˓current : current

In other words, index < 6 was changed to index < 10. Run the cell:

Fig. 10: Editing the OMEX cell

You can re-export this cell to a COMBINE archive by clicking the diskette icon in the upper right:

3.1.5 Find/Replace in Notebook Cells

To search for text in a notebook cell, use ctrl+F. To search for whole-words only, use /\bmyword\b where
myword is the word you want to search for.

To search and replace, use ctrl+shift+R. For example, to replace myvar but not myvar2 (i.e. whole-word
search & replace) in the code below, press ctrl+shift+R, enter /\bmyvar\b/ for the search field and newvar
for the replace field. The result is that all instances of myvar are replaced, but not myvar2:

3.1. Notebook Walkthrough 19

tellurium Documentation, Release 2.1.5

Fig. 11: Exporting the COMBINE archive

Fig. 12: Searching for whole words

Fig. 13: Search & replace demo with whole words

20 Chapter 3. Walkthrough

tellurium Documentation, Release 2.1.5

3.1.6 Example Notebooks

Tellurium comes with many example notebooks showing how to use its various features. To access these notebooks,
use the File -> Open Example Notebook menu. Tellurium comes with five example notebooks:

Fig. 14: Opening example notebooks

The Quickstart notebook contains the Quickstart example from this documentation, using the SBML cells of the
Tellurium notebook viewer.

3.1.7 Exporting to Jupyter

Tellurium notebooks can contain special cell types such as the SBML or OMEX cells described above. These note-
books cannot be properly read by Jupyter. However, you can export these notebooks to Jupyter by choosing File ->
Export to Jupyter... from the menu. You will notice that the exported notebooks contain special cell mag-
ics such as %%crn and %%omex. To run these notebooks in Jupyter, install the temagics package in addition to
tellurium using pip.

3.2 Advanced Topics

3.2.1 Using Other Jupyter Kernels / Languages

A built-in Python 3 kernel is provided with the notebook app. However, there are cases where this is not enough.
Tellurium owes its existance in part to great free / open-source projects like nteract. We recommend anyone interest in
a general-purpose notebook environment consider nteract instead.

Nevertheless, sometimes using a kernel other than the built-in Python 3 kernel is necessary. Starting with version
2.0.14, Tellurium supports automated discovery of other Jupyter kernels, such as different Python versions and dis-
tributions (e.g. Anaconda) and other languages (the Tellurium packages are not available in other languages). The
following example shows how to use an R kernel with Tellurium.

• First, follow the installation instructions for the IRkernel (see also). These instructions use R 3.3.0. The follow-
ing procedure for installing the IRkernel works for us:

3.2. Advanced Topics 21

http://tellurium.readthedocs.io/en/latest/quickstart.html
https://nteract.io/desktop
https://nteract.io/desktop
https://www.r-project.org/
https://github.com/IRkernel/IRkernel
https://irkernel.github.io/installation/

tellurium Documentation, Release 2.1.5

Fig. 15: Quickstart example notebook

22 Chapter 3. Walkthrough

tellurium Documentation, Release 2.1.5

install.packages('devtools')
install.packages(c('repr', 'IRdisplay', 'evaluate', 'crayon', 'pbdZMQ', 'devtools',
→˓'uuid', 'digest'))
devtools::install_github('IRkernel/IRkernel')

• Make sure the IRkernel is registered:

IRkernel::installspec()

• Start the Tellurium notebook app. Under the Language menu, select Find Kernels.... A pop-up with
a Scan button should appear. Click the Scan button. The results of the scan show all the kernels available to
Tellurium. The built-in Python 3 and Node.js kernels are always available. Additional kernels appear based on
installed Jupyter kernels. If you don’t see a Jupyter kernel you want here, make sure you have correctly installed
the kernel (each his its own set of instructions). If the kernel still does not show up, make sure it is a true Jupyter
kernel. Older IPython-based kernels (i.e. kernels which install under ~/.ipython instead of ~/.jupyter)
cannot be discovered by Tellurium.

Fig. 16: Displaying the available kernels after a scan

• Sometimes the path to a kernel’s executable can be displayed by hovering over the kernel’s name. The R kernel
you installed should appear in the list. Click the accept button to cause the Language menu to be updated with
the new kernel choices.

• By selecting Language -> R, you can cause the notebook to switch to the IRkernel. All code cells will be
interpreted as R (SBML and OMEX cells will not work).

3.2. Advanced Topics 23

tellurium Documentation, Release 2.1.5

Fig. 17: Hover over the name of a kernel to display its path

3.3 Notebook Troubleshooting

3.3.1 Problem: Cannot Load Kernel

The notebook viewer ships with a Python3 kernel, which causes problems when trying to open a notebook saved (e.g.
by Jupyter) with Python2.

3.3.2 Solution

In such a case, simply replace the kernel by choosing Language -> Python 3 from the menu.

3.3.3 Problem: Saving the Notebook Takes Forever

3.3.4 Solution

When highly detailed / numerous plots are present, Plotly is known to slow down notebook saving. In
such cases, you can switch to matplotlib instead of Plotly by calling import tellurium as te; te.
setDefaultPlottingEngine('matplotlib') at the beginning of your notebook. When using matplotlib
for plotting, the long save times do not occur.

Alternatively, choose Language -> Restart and Clear All Cells to save the notebook without output.

3.4 Further Reading

• Tellurium notebook is based on the nteract app.

24 Chapter 3. Walkthrough

https://blog.nteract.io/nteract-revolutionizing-the-notebook-experience-d106ca5d2c38

tellurium Documentation, Release 2.1.5

Fig. 18: Demo of running an R kernel in Tellurium

3.4. Further Reading 25

tellurium Documentation, Release 2.1.5

Fig. 19: Error message when kernel cannot be loaded

Fig. 20: Fix for kernel loading problem

Fig. 21: Reset and clear all cells

26 Chapter 3. Walkthrough

tellurium Documentation, Release 2.1.5

• Jupyter.

3.5 IDE Walkthrough

If you have not already done so, download and install the Tellurium Spyder IDE front-end for your platform (only for
Windows, legacy versions supported Mac).

3.5.1 Basics

Tellurium Spyder is based on Spyder IDE, a popular open-source integrated development environment for Python.
Tellurium Spyder offers experience akin to MATLAB, allowing you to view, edit, and execute Python scripts through
dedicated editor and console windows. Addtionally, Tellurium Spyder comes with various tools to help you code.
When you first open Tellurium Spyder, you will be greeted by an editor pane with example script, an IPython console,
and a Help pane. You can execute the script in the editor pane directly on the IPython console by:

• Pressing the green arrow

• Pressing F5

• Pressing Run -> Run

The example script contains an oscillation model. When you run the script, a plot will appear in the IPython console
as the output.

Fig. 22: Output of running the example script

3.5. IDE Walkthrough 27

http://jupyter.org/
https://github.com/sys-bio/tellurium#front-end-2-tellurium-spyder-ide

tellurium Documentation, Release 2.1.5

For more information on how to build and simulate a model, check Quick Start and libRoadRunner Tutorial.

3.5.2 Creating and Running Cells

Similar to Jupyter notebook, Spyder IDE allows you to create cells. To create a cell, simply put #%% in the script.
Each #%% will signal generation of a new cell. To run a cell, press shift+enter while in focus of a cell. If you
want to run only part of a script, you can do it by drag-selecting the part and pressing F9.

3.5.3 Importing Files

Tellurium Spyder comes with few plugins to help you import SBML, SED-ML, and COMBINE archives. Under
File menu, press Open SBML file to open an SBML file and automatically translate it into Antimony string in
a new editor tab. To import SED-ML or COMBINE archive, go to File -> Import. You can import SED-ML or
COMBINE archive using either phraSED-ML notation or raw Python output. Tellurium understands phraSED-ML
notation.

Fig. 23: Importing SBML, SED-ML, and COMBINE archives

28 Chapter 3. Walkthrough

https://tellurium.readthedocs.io/en/latest/quickstart.html
https://sys-bio.github.io/roadrunner/python_docs/using_roadrunner.html

tellurium Documentation, Release 2.1.5

3.5.4 RateLaw Plugin

Tellurium Spyder comes with RateLaw plugin. RateLaw plugin contains a list of various rate laws and allows users to
insert rate laws directly to the editor. Simply put, it is a dictionary of rate laws so that you don’t have to memorize it.
To use it, go to Tools -> Rate Law Library. You can then choose a rate law, fill in the parameters if you wish,
and press Insert Rate Law.

Fig. 24: RateLaw Plugin

3.5.5 Spyder Tips

Both the editor and console window support tab completion. If you are looking for certain functions under a module
or a class, simply press tab.

Spyder IDE also supports various ways to check the documentations. If you wish to know more about a function,
press ctrl+i while the cursur is next to the function to pull up the documentation in the Help window or execute
help(<function>) in IPython console. You can also use <function>? to know more about the object itself.
IPython offers various IPython-specific magic commends. Check it out by running ? without any arguments in the
IPython console.

Sometimes, IPython console might crash. Sometimes, you might want to restart the console to free up some memory.
Yes, these things happen unfortunately. To researt the console, simply press ctrl+. in the console or right click
-> Restart kernel. While doing so, you will notice that you can open another IPython console as well.

3.5. IDE Walkthrough 29

tellurium Documentation, Release 2.1.5

Fig. 25: Pulling documentation in the Help window or through IPython console.

30 Chapter 3. Walkthrough

tellurium Documentation, Release 2.1.5

3.6 Advanced Topics on Tellurium Spyder

3.6.1 Running Jupyter Notebook

Tellurium Spyder comes with Jupyter Notebook by default. To run it, go to Start Menu -> Tellurium
Winpython -> Launch Jupyter Notebook or go to Tellurium Spyder installation directory and run Jupyter
Notebook.exe.

3.6.2 Running Command Prompt for Tellurium Spyder

Sometimes, you might want to run a Windows command prompt with the Python that comes with Tellurium Spyder
as the default Python distribution. This can be useful if you wish to install addtional Python packages with more
control. To do so, go to Start Menu -> Tellurium Winpython -> WinPython Command Prompt or go
to Tellurium Spyder installation directory and run WinPython Command Prompt.exe.

3.6.3 Running JupyterLab

Tellurium Spyder comes with JupyterLab by default. To run it, go to Start Menu -> Tellurium Winpython
-> Launch JupyterLab or go to Tellurium Spyder installation directory and run Jupyter Lab.exe. For more
information on JupyterLab, go to Official JupyterLab Documentation.

3.7 Tellurium Spyder Troubleshooting

3.7.1 Problem: IPython Console Crashed

When this happens, IPython will automatically recover most of the times. If it does not, manually restart the IPython
console using ctrl+. or right click -> Restart kernel.

3.7.2 Problem: Cannot Open Tellruim Spyder

When Spyder IDE crashes, it will automatically try to recover on the next execution. However, if this does not happen,
manually run the reset script. To do so, go to Start Menu -> Tellurium Winpython -> Reset Spyder
or go to Tellurium Spyder installation directory and run Spyder reset.exe. If Spyder still does not open, we
suggest you to clean re-install Tellurium Spyder.

3.8 Further Reading

• Official Spyder documentation

3.6. Advanced Topics on Tellurium Spyder 31

https://jupyterlab.readthedocs.io/en/stable/
https://docs.spyder-ide.org/

tellurium Documentation, Release 2.1.5

3.9 Additional Resources for Tellurium

• For general questions or to request help, please post to the Tellurium-discuss mailing list.

• Herbert Sauro’s modeling textbook, which uses Tellurium

• YouTube video tutorials (made prior to Tellurium notebook).

3.10 Learning Python

• Google’s Python class.

• Official tutorial for Python 2 and Python 3.

32 Chapter 3. Walkthrough

https://groups.google.com/forum/#!forum/tellurium-discuss/
http://tellurium.analogmachine.org/new-modeling-text-book/
https://www.youtube.com/channel/UCpNSURm4YWe7sF0561mcvkg
https://developers.google.com/edu/python/
https://docs.python.org/2/tutorial/
https://docs.python.org/3/tutorial/

CHAPTER 4

Usage Examples

All tellurium examples are available as interactive Tellurium or Jupyter notebooks.

To run the examples, clone the git repository:

git clone https://github.com/sys-bio/tellurium.git

and use the Tellurium notebook viewer or Jupyter to open any notebook in the tellurium/examples/
notebooks/core directory.

Tellurium Spyder comes with these examples under Tellurium Spyder installation directory. Look for folder called
tellurium-winpython-examples.

4.1 Basics

4.1.1 Model Loading

To load models use any the following functions. Each function takes a model with the corresponding format and
converts it to a RoadRunner simulator instance.

• te.loadAntimony (te.loada): Load an Antimony model.

• te.loadSBML: Load an SBML model.

• te.loadCellML: Load a CellML model (this passes the model through Antimony and converts it to SBML,
may be lossy).

import tellurium as te
te.setDefaultPlottingEngine('matplotlib')

model = """
model test

compartment C1;
C1 = 1.0;

(continues on next page)

33

http://tellurium.readthedocs.io/en/latest/installation.html#front-end-1-tellurium-notebook
http://jupyter.readthedocs.org/en/latest/install.html
http://tellurium.readthedocs.io/en/latest/installation.html#front-end-1-tellurium-notebook
http://jupyter.readthedocs.org/en/latest/install.html
http://sys-bio.github.io/roadrunner/python_docs/index.html

tellurium Documentation, Release 2.1.5

(continued from previous page)

species S1, S2;

S1 = 10.0;
S2 = 0.0;
S1 in C1; S2 in C1;
J1: S1 -> S2; k1*S1;

k1 = 1.0;
end
"""
load models
r = te.loada(model)

4.1.2 Running Simulations

Simulating a model in roadrunner is as simple as calling the simulate function on the RoadRunner instance r. The
simulate acceps three positional arguments: start time, end time, and number of points. The simulate function also
accepts the keyword arguments selections, which is a list of variables to include in the output, and steps, which
is the number of integration time steps and can be specified instead of number of points.

simulate from 0 to 50 with 100 steps
r.simulate(0, 50, 100)
plot the simulation
r.plot()

4.1.3 Integrator and Integrator Settings

To set the integrator use r.setIntegrator(<integrator-name>) or r.integrator =
<integrator-name>. RoadRunner supports 'cvode', 'gillespie', and 'rk4' for the integrator

34 Chapter 4. Usage Examples

tellurium Documentation, Release 2.1.5

name. CVODE uses adaptive stepping internally, regardless of whether the output is gridded or not. The size of these
internal steps is controlled by the tolerances, both absolute and relative.

To set integrator settings use r.integrator.<setting-name> = <value> or r.integrator.
setValue(<setting-name>, <value>). Here are some important settings for the cvode integrator:

• variable_step_size: Adaptive step-size integration (True/False).

• stiff: Stiff solver for CVODE only (True/False). Enabled by default.

• absolute_tolerance: Absolute numerical tolerance for integrator internal stepping.

• relative_tolerance: Relative numerical tolerance for integrator internal stepping.

Settings for the gillespie integrator:

• seed: The RNG seed for the Gillespie method. You can set this before running a simulation, or leave it alone
for a different seed each time. Simulations initialized with the same seed will have the same results.

what is the current integrator?
print('The current integrator is:')
print(r.integrator)

enable variable stepping
r.integrator.variable_step_size = True
adjust the tolerances (can set directly or via setValue)
r.integrator.absolute_tolerance = 1e-3 # set directly via property
r.integrator.setValue('relative_tolerance', 1e-1) # set via a call to setValue

run a simulation, stop after reaching or passing time 10
r.reset()
results = r.simulate(0, 10)
r.plot()

print the time values from the simulation
print('Time values:')
print(results[:,0])

The current integrator is:
< roadrunner.Integrator() >

name: cvode
settings:

relative_tolerance: 0.000001
absolute_tolerance: 0.000000000001

stiff: true
maximum_bdf_order: 5

maximum_adams_order: 12
maximum_num_steps: 20000
maximum_time_step: 0
minimum_time_step: 0
initial_time_step: 0

multiple_steps: false
variable_step_size: false

4.1. Basics 35

tellurium Documentation, Release 2.1.5

Time values:
[0.00000000e+00 3.43225906e-07 3.43260229e-03 3.77551929e-02
7.20777836e-02 1.60810095e-01 4.37546265e-01 7.14282434e-01
1.23145372e+00 1.74862501e+00 2.26579629e+00 2.78296758e+00
3.30013887e+00 3.81731015e+00 4.33448144e+00 4.85165273e+00
5.36882401e+00 5.88599530e+00 6.40316659e+00 6.92033787e+00
7.43750916e+00 7.95468045e+00 8.47185173e+00 9.25832855e+00
1.00000000e+01]

set integrator to Gillespie solver
r.setIntegrator('gillespie')
identical ways to set integrator
r.setIntegrator('rk4')
r.integrator = 'rk4'
set back to cvode (the default)
r.setIntegrator('cvode')

set integrator settings
r.integrator.setValue('variable_step_size', False)
r.integrator.setValue('stiff', True)

print integrator settings
print(r.integrator)

< roadrunner.Integrator() >
name: cvode
settings:

relative_tolerance: 0.1
absolute_tolerance: 0.001

stiff: true
maximum_bdf_order: 5

maximum_adams_order: 12
maximum_num_steps: 20000

(continues on next page)

36 Chapter 4. Usage Examples

tellurium Documentation, Release 2.1.5

(continued from previous page)

maximum_time_step: 0
minimum_time_step: 0
initial_time_step: 0

multiple_steps: false
variable_step_size: false

4.1.4 Simulation options

The RoadRunner.simulate method is responsible for running simulations using the current integrator. It accepts
the following arguments:

• start: Start time.

• end: End time.

• points: Number of points in solution (exclusive with steps, do not pass both). If the output is gridded, the
points will be evenly spaced in time. If not, the simulation will stop when it reaches the end time or the number
of points, whichever happens first.

• steps: Number of steps in solution (exclusive with points, do not pass both).

simulate from 0 to 6 with 6 points in the result
r.reset()
pass args explicitly via keywords
res1 = r.simulate(start=0, end=10, points=6)
print(res1)
r.reset()
use positional args to pass start, end, num. points
res2 = r.simulate(0, 10, 6)
print(res2)

time, [S1], [S2]
[[0, 10, 0],
[2, 1.23775, 8.76225],
[4, 0.253289, 9.74671],
[6, 0.0444091, 9.95559],
[8, 0.00950381, 9.9905],
[10, 0.00207671, 9.99792]]

time, [S1], [S2]
[[0, 10, 0],
[2, 1.23775, 8.76225],
[4, 0.253289, 9.74671],
[6, 0.0444091, 9.95559],
[8, 0.00950381, 9.9905],
[10, 0.00207671, 9.99792]]

4.1.5 Selections

The selections list can be used to set which state variables will appear in the output array. By default, it includes all
SBML species and the time variable. Selections can be given as an argument to r.simulate.

print('Floating species in model:')
print(r.getFloatingSpeciesIds())

(continues on next page)

4.1. Basics 37

tellurium Documentation, Release 2.1.5

(continued from previous page)

provide selections to simulate
print(r.simulate(0,10,6, selections=r.getFloatingSpeciesIds()))
r.resetAll()
try different selections
print(r.simulate(0,10,6, selections=['time','J1']))

Floating species in model:
['S1', 'S2']

S1, S2
[[0.00207671, 9.99792],
[0.000295112, 9.9997],
[-0.000234598, 10.0002],
[-0.000203385, 10.0002],
[-9.474e-05, 10.0001],
[-3.43429e-05, 10]]

time, J1
[[0, 10],
[2, 1.23775],
[4, 0.253289],
[6, 0.0444091],
[8, 0.00950381],
[10, 0.00207671]]

4.1.6 Reset model variables

To reset the model’s state variables use the r.reset() and r.reset(SelectionRecord.*) functions. If you
have made modifications to parameter values, use the r.resetAll() function to reset parameters to their initial
values when the model was loaded.

show the current values
for s in ['S1', 'S2']:

print('r.{} == {}'.format(s, r[s]))
reset initial concentrations
r.reset()
print('reset')
S1 and S2 have now again the initial values
for s in ['S1', 'S2']:

print('r.{} == {}'.format(s, r[s]))
change a parameter value
print('r.k1 before = {}'.format(r.k1))
r.k1 = 0.1
print('r.k1 after = {}'.format(r.k1))
reset parameters
r.resetAll()
print('r.k1 after resetAll = {}'.format(r.k1))

r.S1 == 0.0020767122285295023
r.S2 == 9.997923287771478
reset
r.S1 == 10.0
r.S2 == 0.0
r.k1 before = 1.0

(continues on next page)

38 Chapter 4. Usage Examples

tellurium Documentation, Release 2.1.5

(continued from previous page)

r.k1 after = 0.1
r.k1 after resetAll = 1.0

4.2 Models & Model Building

In this section, various types of models and different ways to building models are shown.

4.2.1 Model loading from BioModels

Models can be easily retrieved from BioModels using the loadSBMLModel function in Tellurium. This example
uses a download URL to directly load BIOMD0000000010.

import tellurium as te

Load model from biomodels (may not work with https).
r = te.loadSBMLModel("https://www.ebi.ac.uk/biomodels-main/download?
→˓mid=BIOMD0000000010")
result = r.simulate(0, 3000, 5000)
r.plot(result)

4.2.2 Non-unit stoichiometries

The following example demonstrates how to create a model with non-unit stoichiometries.

import tellurium as te

r = te.loada('''

(continues on next page)

4.2. Models & Model Building 39

tellurium Documentation, Release 2.1.5

(continued from previous page)

model pathway()
S1 + S2 -> 2 S3; k1*S1*S2
3 S3 -> 4 S4 + 6 S5; k2*S3^3
k1 = 0.1;k2 = 0.1;

end
''')
print(r.getCurrentAntimony())

// Created by libAntimony v2.9.4
model *pathway()

// Compartments and Species:
species S1, S2, S3, S4, S5;

// Reactions:
_J0: S1 + S2 -> 2 S3; k1*S1*S2;
_J1: 3 S3 -> 4 S4 + 6 S5; k2*S3^3;

// Species initializations:
S1 = 0;
S2 = 0;
S3 = 0;
S4 = 0;
S5 = 0;

// Variable initializations:
k1 = 0.1;
k2 = 0.1;

// Other declarations:
const k1, k2;

end

4.2.3 Consecutive UniUni reactions using first-order mass-action kinetics

Model creation and simulation of a simple irreversible chain of reactions S1 -> S2 -> S3 -> S4.

import tellurium as te

r = te.loada('''
model pathway()
S1 -> S2; k1*S1
S2 -> S3; k2*S2
S3 -> S4; k3*S3

Initialize values
S1 = 5; S2 = 0; S3 = 0; S4 = 0;
k1 = 0.1; k2 = 0.55; k3 = 0.76

end
''')

result = r.simulate(0, 20, 51)
te.plotArray(result);

40 Chapter 4. Usage Examples

tellurium Documentation, Release 2.1.5

4.2.4 Generate different wave forms

Example for how to create different wave form functions in tellurium.

import tellurium as te
from roadrunner import Config

We do not want CONSERVED MOIETIES set to true in this case
Config.setValue(Config.LOADSBMLOPTIONS_CONSERVED_MOIETIES, False)

Generating different waveforms
model = '''

model waveforms()
All waves have the following amplitude and period
amplitude = 1
period = 10

These events set the 'UpDown' variable to 1 or 0 according to the period.
UpDown=0
at sin(2*pi*time/period) > 0, t0=false: UpDown = 1
at sin(2*pi*time/period) <= 0, t0=false: UpDown = 0

Simple Sine wave with y displaced by 3
SineWave := amplitude/2*sin(2*pi*time/period) + 3

Square wave with y displaced by 1.5
SquareWave := amplitude*UpDown + 1.5

Triangle waveform with given period and y displaced by 1
TriangleWave = 1
TriangleWave' = amplitude*2*(UpDown - 0.5)/period

Saw tooth wave form with given period
(continues on next page)

4.2. Models & Model Building 41

tellurium Documentation, Release 2.1.5

(continued from previous page)

SawTooth = amplitude/2
SawTooth' = amplitude/period
at UpDown==0: SawTooth = 0

Simple ramp
Ramp := 0.03*time

end
'''

r = te.loada(model)

r.timeCourseSelections = ['time', 'SineWave', 'SquareWave', 'SawTooth', 'TriangleWave
→˓', 'Ramp']
result = r.simulate (0, 90, 500)
r.plot(result)

reset to default config
Config.setValue(Config.LOADSBMLOPTIONS_CONSERVED_MOIETIES, False)

4.2.5 Normalized species

Example model which calculates functions depending on the normalized values of a species which can be either in
active state SA or inactive state SI.

The normalized values are SA_f and SI_f, respectively, with the total concentration of S given as

ST = SA + SI

Model definition

The model is defined using Tellurium and Antimony. The identical equations could be typed directly in COPASI.

42 Chapter 4. Usage Examples

tellurium Documentation, Release 2.1.5

The created model is exported as SBML which than can be used in COPASI.

import tellurium as te
r = te.loada("""

model normalized_species()

conversion between active (SA) and inactive (SI)
J1: SA -> SI; k1*SA - k2*SI;
k1 = 0.1; k2 = 0.02;

species
species SA, SI, ST;
SA = 10.0; SI = 0.0;
const ST := SA + SI;

SA is "active state S";
SI is "inactive state S";
ST is "total state S";

normalized species calculated via assignment rules
species SA_f, SI_f;
SA_f := SA/ST;
SI_f := SI/ST;

SA_f is "normalized active state S";
SI_f is "normalized inactive state S";

parameters for your function
P = 0.1;
tau = 10.0;
nA = 1.0;
nI = 2.0;
kA = 0.1;
kI = 0.2;
now just use the normalized species in some math
F := ((1-(SI_f^nI)/(kI^nI+SI_f^nI)*(kI^nI+1)) * ((SA_f^nA)/(kA^nA+SA_f^nA)*(kA^

→˓nA+1)) -P)*tau;

end
""")
print(r.getAntimony())

Store the SBML for COPASI
import os
import tempfile
temp_dir = tempfile.mkdtemp()
file_path = os.path.join(temp_dir, 'normalizedSpecies.xml')
r.exportToSBML(file_path)

Model simulation

We perform a simple model simulation to demonstrate the main features using roadrunner: - normalized val-
ues SA_f and SI_f are normalized in [0,1] - the normalized values have same dynamics like SA and SF - the
normalized values can be used to calculates some dependent function, here F

4.2. Models & Model Building 43

tellurium Documentation, Release 2.1.5

r.reset()
select the variables of interest in output
r.selections = ['time', 'F'] + r.getBoundarySpeciesIds() \

+ r.getFloatingSpeciesIds()
simulate from 0 to 50 with 1001 points
s = r.simulate(0,50,1001)
plot the results
r.plot(s);

4.3 Simulation and Analysis Methods

In this section, different ways to simlate and analyse a model is shown.

Stochastic simulations can be run by changing the current integrator type to ‘gillespie’ or by using the r.gillespie
function.

import tellurium as te
import numpy as np

r = te.loada('S1 -> S2; k1*S1; k1 = 0.1; S1 = 40')
r.integrator = 'gillespie'
r.integrator.seed = 1234

results = []
for k in range(1, 50):

r.reset()
s = r.simulate(0, 40)
results.append(s)
r.plot(s, show=False, alpha=0.7)

te.show()

44 Chapter 4. Usage Examples

tellurium Documentation, Release 2.1.5

Setting the identical seed for all repeats results in identical traces in each simulation.

results = []
for k in range(1, 20):

r.reset()
r.setSeed(123456)
s = r.simulate(0, 40)
results.append(s)
r.plot(s, show=False, loc=None, color='black', alpha=0.7)

te.show()

You can combine two timecourse simulations and change e.g. parameter values in between each simulation. The

4.3. Simulation and Analysis Methods 45

tellurium Documentation, Release 2.1.5

gillespie method simulates up to the given end time 10, after which you can make arbitrary changes to the model,
then simulate again.

When using the r.plot function, you can pass the parameter labels, which controls the names that will be used
in the figure legend, and tag, which ensures that traces with the same tag will be drawn with the same color (each
species within each trace will be plotted in its own color, but these colors will match trace to trace).

import tellurium as te

r = te.loada('S1 -> S2; k1*S1; k1 = 0.02; S1 = 100')
r.setSeed(1234)
for k in range(1, 20):

r.resetToOrigin()
res1 = r.gillespie(0, 10)
r.plot(res1, show=False) # plot first half of data

change in parameter after the first half of the simulation
We could have also used an Event in the antimony model,
which are described further in the Antimony Reference section
r.k1 = r.k1*20
res2 = r.gillespie (10, 20)

r.plot(res2, show=False) # plot second half of data

te.show()

46 Chapter 4. Usage Examples

tellurium Documentation, Release 2.1.5

4.4 SED-ML

Tellurium exchangeability via the simulation experiment description markup language SED-ML and COMBINE
archives (.omex files). These formats are designed to allow modeling software to exchange models and simulations.
Whereas SBML encodes models, SED-ML encodes simulations, including the solver (e.g. deterministic or stochas-
tic), the type of simulation (timecourse or steady state), and various parameters (start/end time, ODE solver tolerances,
etc.).

4.4.1 Working with SED-ML

SED-ML describes how to run a set of simulations on a model encoded in SBML or CellML through specifying tasks,
algorithm parameters, and post-processing. SED-ML has a limited vocabulary of simulation types (timecourse and
steady state) is not designed to replace scripting with Python or other general-purpose languages. Instead, SED-ML
is designed to provide a rudimentary way to reproduce the dynamics of a model across different tools. This process
would otherwise require human intervention and becomes very laborious when thousands of models are involved.

The basic elements of a SED-ML document are:

• Models, which reference external SBML/CellML files or other previously defined models within the same SED-
ML document,

• Simulations, which reference specific numerical solvers from the KiSAO ontology,

• Tasks, which apply a simulation to a model, and

• Outputs, which can be plots or reports.

Models in SED-ML essentially create instances of SBML/CellML models, and each instance can have different pa-
rameters.

Tellurium’s approach to handling SED-ML is to first convert the SED-ML document to a Python script, which contains
all the Tellurium-specific function calls to run all tasks described in the SED-ML. For authoring SED-ML, Tellurium
uses PhraSEDML, a human-readable analog of SED-ML. Example syntax is shown below.

SED-ML files are not very useful in isolation. Since SED-ML always references external SBML and CellML
files, software which supports exchanging SED-ML files should use COMBINE archives, which package all related
standards-encoded files together.

Reproducible computational biology experiments with SED-ML - The Simulation Experiment Descrip-
tion Markup Language. Waltemath D., Adams R., Bergmann F.T., Hucka M., Kolpakov F., Miller
A.K., Moraru I.I., Nickerson D., Snoep J.L.,Le Novère, N. BMC Systems Biology 2011, 5:198 (http:
//www.pubmed.org/22172142)

Creating a SED-ML file

This example shows how to use PhraSEDML to author SED-ML files. Whenever a PhraSEDML script references an
external model, you should use phrasedml.setReferencedSBML to ensure that the PhraSEDML script can be
properly converted into a SED-ML file.

import tellurium as te
te.setDefaultPlottingEngine('matplotlib')
import phrasedml

antimony_str = '''
model myModel

S1 -> S2; k1*S1

(continues on next page)

4.4. SED-ML 47

https://sed-ml.github.io/
http://co.mbine.org/documents/archive
http://co.mbine.org/documents/archive
http://co.mbine.org/standards/kisao
http://www.pubmed.org/22172142
http://www.pubmed.org/22172142

tellurium Documentation, Release 2.1.5

(continued from previous page)

S1 = 10; S2 = 0
k1 = 1

end
'''

phrasedml_str = '''
model1 = model "myModel"
sim1 = simulate uniform(0, 5, 100)
task1 = run sim1 on model1
plot "Figure 1" time vs S1, S2

'''

create the sedml xml string from the phrasedml
sbml_str = te.antimonyToSBML(antimony_str)
phrasedml.setReferencedSBML("myModel", sbml_str)

sedml_str = phrasedml.convertString(phrasedml_str)
if sedml_str == None:

print(phrasedml.getLastPhrasedError())
print(sedml_str)

<?xml version="1.0" encoding="UTF-8"?>
<!-- Created by phraSED-ML version v1.0.9 with libSBML version 5.15.0. -->
<sedML xmlns="http://sed-ml.org/sed-ml/level1/version2" level="1" version="2">

<listOfSimulations>
<uniformTimeCourse id="sim1" initialTime="0" outputStartTime="0" outputEndTime="5

→˓" numberOfPoints="100">
<algorithm kisaoID="KISAO:0000019"/>

</uniformTimeCourse>
</listOfSimulations>
<listOfModels>
<model id="model1" language="urn:sedml:language:sbml.level-3.version-1" source=

→˓"myModel"/>
</listOfModels>
<listOfTasks>
<task id="task1" modelReference="model1" simulationReference="sim1"/>

</listOfTasks>
<listOfDataGenerators>
<dataGenerator id="plot_0_0_0" name="time">

<listOfVariables>
<variable id="time" symbol="urn:sedml:symbol:time" taskReference="task1"/>

</listOfVariables>
<math xmlns="http://www.w3.org/1998/Math/MathML">

<ci> time </ci>
</math>

</dataGenerator>
<dataGenerator id="plot_0_0_1" name="S1">

<listOfVariables>
<variable id="S1" target="/sbml:sbml/sbml:model/sbml:listOfSpecies/

→˓sbml:species[@id='S1']" taskReference="task1" modelReference="model1"/>
</listOfVariables>
<math xmlns="http://www.w3.org/1998/Math/MathML">

<ci> S1 </ci>
</math>

</dataGenerator>
<dataGenerator id="plot_0_1_1" name="S2">

(continues on next page)

48 Chapter 4. Usage Examples

tellurium Documentation, Release 2.1.5

(continued from previous page)

<listOfVariables>
<variable id="S2" target="/sbml:sbml/sbml:model/sbml:listOfSpecies/

→˓sbml:species[@id='S2']" taskReference="task1" modelReference="model1"/>
</listOfVariables>
<math xmlns="http://www.w3.org/1998/Math/MathML">

<ci> S2 </ci>
</math>

</dataGenerator>
</listOfDataGenerators>
<listOfOutputs>
<plot2D id="plot_0" name="Figure 1">

<listOfCurves>
<curve id="plot_0__plot_0_0_0__plot_0_0_1" logX="false" logY="false"

→˓xDataReference="plot_0_0_0" yDataReference="plot_0_0_1"/>
<curve id="plot_0__plot_0_0_0__plot_0_1_1" logX="false" logY="false"

→˓xDataReference="plot_0_0_0" yDataReference="plot_0_1_1"/>
</listOfCurves>

</plot2D>
</listOfOutputs>

</sedML>

4.4.2 Reading / Executing SED-ML

After converting PhraSEDML to SED-ML, you can call te.executeSEDML to use Tellurium to execute all simula-
tions in the SED-ML. This example also shows how to use libSEDML (used by Tellurium and PhraSEDML internally)
for reading SED-ML files.

import tempfile, os, shutil

workingDir = tempfile.mkdtemp(suffix="_sedml")

sbml_file = os.path.join(workingDir, 'myModel')
sedml_file = os.path.join(workingDir, 'sed_main.xml')

with open(sbml_file, 'wb') as f:
f.write(sbml_str.encode('utf-8'))
f.flush()
print('SBML written to temporary file')

with open(sedml_file, 'wb') as f:
f.write(sedml_str.encode('utf-8'))
f.flush()
print('SED-ML written to temporary file')

For technical reasons, any software which uses libSEDML
must provide a custom build - Tellurium uses tesedml
import tesedml as libsedml
sedml_doc = libsedml.readSedML(sedml_file)
n_errors = sedml_doc.getErrorLog().getNumFailsWithSeverity(libsedml.LIBSEDML_SEV_
→˓ERROR)
print('Read SED-ML file, number of errors: {}'.format(n_errors))
if n_errors > 0:

print(sedml_doc.getErrorLog().toString())

execute SED-ML using Tellurium
(continues on next page)

4.4. SED-ML 49

https://github.com/fbergmann/libSEDML

tellurium Documentation, Release 2.1.5

(continued from previous page)

te.executeSEDML(sedml_str, workingDir=workingDir)

clean up
#shutil.rmtree(workingDir)

SBML written to temporary file
SED-ML written to temporary file
Read SED-ML file, number of errors: 0

4.4.3 SED-ML L1V2 specification example

This example uses the celebrated repressilator model to demonstrate how to 1) download a model from the BioModels
database, 2) create a PhraSEDML string to simulate the model, 3) convert the PhraSEDML to SED-ML, and 4) use
Tellurium to execute the resulting SED-ML.

This and other examples here are the SED-ML reference specification (Introduction section).

import tellurium as te, tellurium.temiriam as temiriam
te.setDefaultPlottingEngine('matplotlib')
import phrasedml

Get SBML from URN and set for phrasedml
urn = "urn:miriam:biomodels.db:BIOMD0000000012"
sbml_str = temiriam.getSBMLFromBiomodelsURN(urn=urn)

(continues on next page)

50 Chapter 4. Usage Examples

https://www.ebi.ac.uk/biomodels-main/BIOMD0000000012
https://www.ebi.ac.uk/biomodels-main/
https://www.ebi.ac.uk/biomodels-main/
http://sed-ml.sourceforge.net/documents/sed-ml-L1V2.pdf

tellurium Documentation, Release 2.1.5

(continued from previous page)

phrasedml.setReferencedSBML('BIOMD0000000012', sbml_str)

<SBML species>
PX - LacI protein
PY - TetR protein
PZ - cI protein
X - LacI mRNA
Y - TetR mRNA
Z - cI mRNA

<SBML parameters>
ps_a - tps_active: Transcrition from free promotor in transcripts per second and
→˓promotor
ps_0 - tps_repr: Transcrition from fully repressed promotor in transcripts per
→˓second and promotor

phrasedml_str = """
model1 = model "{}"
model2 = model model1 with ps_0=1.3E-5, ps_a=0.013
sim1 = simulate uniform(0, 1000, 1000)
task1 = run sim1 on model1
task2 = run sim1 on model2

A simple timecourse simulation
plot "Figure 1.1 Timecourse of repressilator" task1.time vs task1.PX, task1.PZ,

→˓task1.PY

Applying preprocessing
plot "Figure 1.2 Timecourse after pre-processing" task2.time vs task2.PX, task2.

→˓PZ, task2.PY

Applying postprocessing
plot "Figure 1.3 Timecourse after post-processing" task1.PX/max(task1.PX) vs

→˓task1.PZ/max(task1.PZ), \
task1.PY/max(task1.PY) vs

→˓task1.PX/max(task1.PX), \
task1.PZ/max(task1.PZ) vs

→˓task1.PY/max(task1.PY)
""".format('BIOMD0000000012')

convert to SED-ML
sedml_str = phrasedml.convertString(phrasedml_str)
if sedml_str == None:

raise RuntimeError(phrasedml.getLastError())

Run the SED-ML file with results written in workingDir
import tempfile, shutil, os
workingDir = tempfile.mkdtemp(suffix="_sedml")
write out SBML
with open(os.path.join(workingDir, 'BIOMD0000000012'), 'wb') as f:

f.write(sbml_str.encode('utf-8'))
te.executeSEDML(sedml_str, workingDir=workingDir)
shutil.rmtree(workingDir)

4.4. SED-ML 51

tellurium Documentation, Release 2.1.5

52 Chapter 4. Usage Examples

tellurium Documentation, Release 2.1.5

4.4. SED-ML 53

tellurium Documentation, Release 2.1.5

4.5 COMBINE & Inline OMEX

COMBINE archives package related standards such as SBML models and SED-ML simulations together so that they
can be easily exchanged between software tools. Tellurium provides the inline OMEX format for editing the contents
of COMBINE archives in a human-readable format. You can use the function convertCombineArchive to
convert a COMBINE archive on disk to an inline OMEX string, and the function executeInlineOmex to execute
the inline OMEX string. Examples below.

tellurium.convertCombineArchive(location)
Read a COMBINE archive and convert its contents to an inline Omex.

Parameters location – Filesystem path to the archive.

tellurium.executeInlineOmex(inline_omex, comp=False)
Execute inline phrasedml and antimony.

Parameters inline_omex – String containing inline phrasedml and antimony.

tellurium.exportInlineOmex(inline_omex, export_location)
Export an inline OMEX string to a COMBINE archive.

Parameters

• inline_omex – String containing inline OMEX describing models and simulations.

• export_location – Filepath of Combine archive to create.

tellurium.extractFileFromCombineArchive(archive_path, entry_location)
Extract a single file from a COMBINE archive and return it as a string.

54 Chapter 4. Usage Examples

tellurium Documentation, Release 2.1.5

4.5.1 Inline OMEX and COMBINE archives

Tellurium provides a way to easily edit the contents of COMBINE archives in a human-readable format called inline
OMEX. To create a COMBINE archive, simply create a string containing all models (in Antimony format) and all
simulations (in PhraSEDML format). Tellurium will transparently convert the Antimony to SBML and PhraSEDML
to SED-ML, then execute the resulting SED-ML. The following example will work in either Jupyter or the Tellurium
notebook viewer. The Tellurium notebook viewer allows you to create specialized cells for inline OMEX, which
contain correct syntax-highlighting for the format.

import tellurium as te, tempfile, os
te.setDefaultPlottingEngine('matplotlib')

antimony_str = '''
model myModel

S1 -> S2; k1*S1
S1 = 10; S2 = 0
k1 = 1

end
'''

phrasedml_str = '''
model1 = model "myModel"
sim1 = simulate uniform(0, 5, 100)
task1 = run sim1 on model1
plot "Figure 1" time vs S1, S2

'''

create an inline OMEX (inline representation of a COMBINE archive)
from the antimony and phrasedml strings
inline_omex = '\n'.join([antimony_str, phrasedml_str])

execute the inline OMEX
te.executeInlineOmex(inline_omex)
export to a COMBINE archive
workingDir = tempfile.mkdtemp(suffix="_omex")
te.exportInlineOmex(inline_omex, os.path.join(workingDir, 'archive.omex'))

4.5. COMBINE & Inline OMEX 55

http://tellurium.readthedocs.io/en/latest/installation.html#front-end-1-tellurium-notebook
http://tellurium.readthedocs.io/en/latest/installation.html#front-end-1-tellurium-notebook

tellurium Documentation, Release 2.1.5

4.5.2 Forcing Functions

A common task in modeling is to represent the influence of an external, time-varying input on the system. In SED-
ML, this can be accomplished using a repeated task to run a simulation for a short amount of time and update the
forcing function between simulations. In the example, the forcing function is a pulse represented with a piecewise
directive, but it can be any arbitrarily complex time-varying function, as shown in the second example.

import tellurium as te

antimony_str = '''
// Created by libAntimony v2.9
model *oneStep()

// Compartments and Species:
compartment compartment_;
species S1 in compartment_, S2 in compartment_, $X0 in compartment_, $X1 in
→˓compartment_;
species $X2 in compartment_;

// Reactions:
J0: $X0 => S1; J0_v0;
J1: S1 => $X1; J1_k3*S1;
J2: S1 => S2; (J2_k1*S1 - J2_k_1*S2)*(1 + J2_c*S2^J2_q);
J3: S2 => $X2; J3_k2*S2;

(continues on next page)

56 Chapter 4. Usage Examples

tellurium Documentation, Release 2.1.5

(continued from previous page)

// Species initializations:
S1 = 0;
S2 = 1;
X0 = 1;
X1 = 0;
X2 = 0;

// Compartment initializations:
compartment_ = 1;

// Variable initializations:
J0_v0 = 8;
J1_k3 = 0;
J2_k1 = 1;
J2_k_1 = 0;
J2_c = 1;
J2_q = 3;
J3_k2 = 5;

// Other declarations:
const compartment_, J0_v0, J1_k3, J2_k1, J2_k_1, J2_c, J2_q, J3_k2;
end
'''

phrasedml_str = '''
model1 = model "oneStep"
stepper = simulate onestep(0.1)
task0 = run stepper on model1
task1 = repeat task0 for local.x in uniform(0, 10, 100), J0_v0 = piecewise(8, x<4, 0.
→˓1, 4<=x<6, 8)
task2 = repeat task0 for local.index in uniform(0, 10, 1000), local.current = index ->
→˓ abs(sin(1 / (0.1 * index + 0.1))), model1.J0_v0 = current : current
plot "Forcing Function (Pulse)" task1.time vs task1.S1, task1.S2, task1.J0_v0
plot "Forcing Function (Custom)" task2.time vs task2.S1, task2.S2, task2.J0_v0
'''

create the inline OMEX string
inline_omex = '\n'.join([antimony_str, phrasedml_str])

export to a COMBINE archive
workingDir = tempfile.mkdtemp(suffix="_omex")
archive_name = os.path.join(workingDir, 'archive.omex')
te.exportInlineOmex(inline_omex, archive_name)
convert the COMBINE archive back into an
inline OMEX (transparently) and execute it
te.convertAndExecuteCombineArchive(archive_name)

4.5. COMBINE & Inline OMEX 57

tellurium Documentation, Release 2.1.5

58 Chapter 4. Usage Examples

tellurium Documentation, Release 2.1.5

4.5.3 1d Parameter Scan

This example shows how to perform a one-dimensional parameter scan using Antimony/PhraSEDML and convert the
study to a COMBINE archive. The example uses a PhraSEDML repeated task task1 to run a timecourse simulation
task0 on a model for different values of the parameter J0_v0.

import tellurium as te

antimony_str = '''
// Created by libAntimony v2.9
model *parameterScan1D()

// Compartments and Species:
compartment compartment_;
species S1 in compartment_, S2 in compartment_, $X0 in compartment_, $X1 in
→˓compartment_;
species $X2 in compartment_;

// Reactions:
J0: $X0 => S1; J0_v0;
J1: S1 => $X1; J1_k3*S1;
J2: S1 => S2; (J2_k1*S1 - J2_k_1*S2)*(1 + J2_c*S2^J2_q);
J3: S2 => $X2; J3_k2*S2;

// Species initializations:

(continues on next page)

4.5. COMBINE & Inline OMEX 59

tellurium Documentation, Release 2.1.5

(continued from previous page)

S1 = 0;
S2 = 1;
X0 = 1;
X1 = 0;
X2 = 0;

// Compartment initializations:
compartment_ = 1;

// Variable initializations:
J0_v0 = 8;
J1_k3 = 0;
J2_k1 = 1;
J2_k_1 = 0;
J2_c = 1;
J2_q = 3;
J3_k2 = 5;

// Other declarations:
const compartment_, J0_v0, J1_k3, J2_k1, J2_k_1, J2_c, J2_q, J3_k2;
end
'''

phrasedml_str = '''
model1 = model "parameterScan1D"
timecourse1 = simulate uniform(0, 20, 1000)
task0 = run timecourse1 on model1
task1 = repeat task0 for J0_v0 in [8, 4, 0.4], reset=true
plot task1.time vs task1.S1, task1.S2
'''

create the inline OMEX string
inline_omex = '\n'.join([antimony_str, phrasedml_str])

execute the inline OMEX
te.executeInlineOmex(inline_omex)

60 Chapter 4. Usage Examples

tellurium Documentation, Release 2.1.5

4.5.4 2d Parameter Scan

There are multiple was to specify the set of values that should be swept over. This example uses two repeated tasks
instead of one. It sweeps through a discrete set of values for the parameter J1_KK2, and then sweeps through a
uniform range for another parameter J4_KK5.

import tellurium as te

antimony_str = '''
// Created by libAntimony v2.9
model *parameterScan2D()

// Compartments and Species:
compartment compartment_;
species MKKK in compartment_, MKKK_P in compartment_, MKK in compartment_;
species MKK_P in compartment_, MKK_PP in compartment_, MAPK in compartment_;
species MAPK_P in compartment_, MAPK_PP in compartment_;

// Reactions:
J0: MKKK => MKKK_P; (J0_V1*MKKK)/((1 + (MAPK_PP/J0_Ki)^J0_n)*(J0_K1 + MKKK));
J1: MKKK_P => MKKK; (J1_V2*MKKK_P)/(J1_KK2 + MKKK_P);
J2: MKK => MKK_P; (J2_k3*MKKK_P*MKK)/(J2_KK3 + MKK);
J3: MKK_P => MKK_PP; (J3_k4*MKKK_P*MKK_P)/(J3_KK4 + MKK_P);
J4: MKK_PP => MKK_P; (J4_V5*MKK_PP)/(J4_KK5 + MKK_PP);
J5: MKK_P => MKK; (J5_V6*MKK_P)/(J5_KK6 + MKK_P);

(continues on next page)

4.5. COMBINE & Inline OMEX 61

tellurium Documentation, Release 2.1.5

(continued from previous page)

J6: MAPK => MAPK_P; (J6_k7*MKK_PP*MAPK)/(J6_KK7 + MAPK);
J7: MAPK_P => MAPK_PP; (J7_k8*MKK_PP*MAPK_P)/(J7_KK8 + MAPK_P);
J8: MAPK_PP => MAPK_P; (J8_V9*MAPK_PP)/(J8_KK9 + MAPK_PP);
J9: MAPK_P => MAPK; (J9_V10*MAPK_P)/(J9_KK10 + MAPK_P);

// Species initializations:
MKKK = 90;
MKKK_P = 10;
MKK = 280;
MKK_P = 10;
MKK_PP = 10;
MAPK = 280;
MAPK_P = 10;
MAPK_PP = 10;

// Compartment initializations:
compartment_ = 1;

// Variable initializations:
J0_V1 = 2.5;
J0_Ki = 9;
J0_n = 1;
J0_K1 = 10;
J1_V2 = 0.25;
J1_KK2 = 8;
J2_k3 = 0.025;
J2_KK3 = 15;
J3_k4 = 0.025;
J3_KK4 = 15;
J4_V5 = 0.75;
J4_KK5 = 15;
J5_V6 = 0.75;
J5_KK6 = 15;
J6_k7 = 0.025;
J6_KK7 = 15;
J7_k8 = 0.025;
J7_KK8 = 15;
J8_V9 = 0.5;
J8_KK9 = 15;
J9_V10 = 0.5;
J9_KK10 = 15;

// Other declarations:
const compartment_, J0_V1, J0_Ki, J0_n, J0_K1, J1_V2, J1_KK2, J2_k3, J2_KK3;
const J3_k4, J3_KK4, J4_V5, J4_KK5, J5_V6, J5_KK6, J6_k7, J6_KK7, J7_k8;
const J7_KK8, J8_V9, J8_KK9, J9_V10, J9_KK10;

end
'''

phrasedml_str = '''
model_3 = model "parameterScan2D"
sim_repeat = simulate uniform(0,3000,100)
task_1 = run sim_repeat on model_3
repeatedtask_1 = repeat task_1 for J1_KK2 in [1, 5, 10, 50, 60, 70, 80, 90, 100],

→˓reset=true
repeatedtask_2 = repeat repeatedtask_1 for J4_KK5 in uniform(1, 40, 10), reset=true
plot repeatedtask_2.J4_KK5 vs repeatedtask_2.J1_KK2

(continues on next page)

62 Chapter 4. Usage Examples

tellurium Documentation, Release 2.1.5

(continued from previous page)

plot repeatedtask_2.time vs repeatedtask_2.MKK, repeatedtask_2.MKK_P
'''

create the inline OMEX string
inline_omex = '\n'.join([antimony_str, phrasedml_str])

execute the inline OMEX
te.executeInlineOmex(inline_omex)

4.5. COMBINE & Inline OMEX 63

tellurium Documentation, Release 2.1.5

4.5.5 Stochastic Simulation and RNG Seeding

It is possible to programatically set the RNG seed of a stochastic simulation in PhraSEDML using the
<simulation-name>.algorithm.seed = <value> directive. Simulations run with the same seed are iden-
tical. If the seed is not specified, a different value is used each time, leading to different results.

-*- coding: utf-8 -*-
"""
phrasedml repeated stochastic test
"""
import tellurium as te

antimony_str = '''
// Created by libAntimony v2.9
model *repeatedStochastic()

// Compartments and Species:
compartment compartment_;
species MKKK in compartment_, MKKK_P in compartment_, MKK in compartment_;
species MKK_P in compartment_, MKK_PP in compartment_, MAPK in compartment_;
species MAPK_P in compartment_, MAPK_PP in compartment_;

// Reactions:
J0: MKKK => MKKK_P; (J0_V1*MKKK)/((1 + (MAPK_PP/J0_Ki)^J0_n)*(J0_K1 + MKKK));
J1: MKKK_P => MKKK; (J1_V2*MKKK_P)/(J1_KK2 + MKKK_P);

(continues on next page)

64 Chapter 4. Usage Examples

tellurium Documentation, Release 2.1.5

(continued from previous page)

J2: MKK => MKK_P; (J2_k3*MKKK_P*MKK)/(J2_KK3 + MKK);
J3: MKK_P => MKK_PP; (J3_k4*MKKK_P*MKK_P)/(J3_KK4 + MKK_P);
J4: MKK_PP => MKK_P; (J4_V5*MKK_PP)/(J4_KK5 + MKK_PP);
J5: MKK_P => MKK; (J5_V6*MKK_P)/(J5_KK6 + MKK_P);
J6: MAPK => MAPK_P; (J6_k7*MKK_PP*MAPK)/(J6_KK7 + MAPK);
J7: MAPK_P => MAPK_PP; (J7_k8*MKK_PP*MAPK_P)/(J7_KK8 + MAPK_P);
J8: MAPK_PP => MAPK_P; (J8_V9*MAPK_PP)/(J8_KK9 + MAPK_PP);
J9: MAPK_P => MAPK; (J9_V10*MAPK_P)/(J9_KK10 + MAPK_P);

// Species initializations:
MKKK = 90;
MKKK_P = 10;
MKK = 280;
MKK_P = 10;
MKK_PP = 10;
MAPK = 280;
MAPK_P = 10;
MAPK_PP = 10;

// Compartment initializations:
compartment_ = 1;

// Variable initializations:
J0_V1 = 2.5;
J0_Ki = 9;
J0_n = 1;
J0_K1 = 10;
J1_V2 = 0.25;
J1_KK2 = 8;
J2_k3 = 0.025;
J2_KK3 = 15;
J3_k4 = 0.025;
J3_KK4 = 15;
J4_V5 = 0.75;
J4_KK5 = 15;
J5_V6 = 0.75;
J5_KK6 = 15;
J6_k7 = 0.025;
J6_KK7 = 15;
J7_k8 = 0.025;
J7_KK8 = 15;
J8_V9 = 0.5;
J8_KK9 = 15;
J9_V10 = 0.5;
J9_KK10 = 15;

// Other declarations:
const compartment_, J0_V1, J0_Ki, J0_n, J0_K1, J1_V2, J1_KK2, J2_k3, J2_KK3;
const J3_k4, J3_KK4, J4_V5, J4_KK5, J5_V6, J5_KK6, J6_k7, J6_KK7, J7_k8;
const J7_KK8, J8_V9, J8_KK9, J9_V10, J9_KK10;
end
'''

phrasedml_str = '''
model1 = model "repeatedStochastic"
timecourse1 = simulate uniform_stochastic(0, 4000, 1000)
timecourse1.algorithm.seed = 1003

(continues on next page)

4.5. COMBINE & Inline OMEX 65

tellurium Documentation, Release 2.1.5

(continued from previous page)

timecourse2 = simulate uniform_stochastic(0, 4000, 1000)
task1 = run timecourse1 on model1
task2 = run timecourse2 on model1
repeat1 = repeat task1 for local.x in uniform(0, 10, 10), reset=true
repeat2 = repeat task2 for local.x in uniform(0, 10, 10), reset=true
plot "Repeats with same seed" repeat1.time vs repeat1.MAPK, repeat1.MAPK_P, repeat1.
→˓MAPK_PP, repeat1.MKK, repeat1.MKK_P, repeat1.MKKK, repeat1.MKKK_P
plot "Repeats without seeding" repeat2.time vs repeat2.MAPK, repeat2.MAPK_P, repeat2.
→˓MAPK_PP, repeat2.MKK, repeat2.MKK_P, repeat2.MKKK, repeat2.MKKK_P
'''

create the inline OMEX string
inline_omex = '\n'.join([antimony_str, phrasedml_str])

execute the inline OMEX
te.executeInlineOmex(inline_omex)

66 Chapter 4. Usage Examples

tellurium Documentation, Release 2.1.5

4.5.6 Resetting Models

This example is another parameter scan which shows the effect of resetting the model or not after each simulation.
When using the repeated task directive in PhraSEDML, you can pass the reset=true argument to reset the model
to its initial conditions after each repeated simulation. Leaving this argument off causes the model to retain its current
state between simulations. In this case, the time value is not reset.

import tellurium as te

antimony_str = """
model case_02

J0: S1 -> S2; k1*S1;
S1 = 10.0; S2=0.0;
k1 = 0.1;

end
"""

phrasedml_str = """
model0 = model "case_02"
model1 = model model0 with S1=5.0
sim0 = simulate uniform(0, 6, 100)
task0 = run sim0 on model1
reset the model after each simulation
task1 = repeat task0 for k1 in uniform(0.0, 5.0, 5), reset = true
show the effect of not resetting for comparison

(continues on next page)

4.5. COMBINE & Inline OMEX 67

tellurium Documentation, Release 2.1.5

(continued from previous page)

task2 = repeat task0 for k1 in uniform(0.0, 5.0, 5)
plot "Repeated task with reset" task1.time vs task1.S1, task1.S2
plot "Repeated task without reset" task2.time vs task2.S1, task2.S2

"""

create the inline OMEX string
inline_omex = '\n'.join([antimony_str, phrasedml_str])

execute the inline OMEX
te.executeInlineOmex(inline_omex)

68 Chapter 4. Usage Examples

tellurium Documentation, Release 2.1.5

4.5.7 3d Plotting

This example shows how to use PhraSEDML to perform 3d plotting. The syntax is plot <x> vs <y> vs <z>,
where <x>, <y>, and <z> are references to model state variables used in specific tasks.

import tellurium as te

antimony_str = '''
// Created by libAntimony v2.9
model *case_09()

// Compartments and Species:
compartment compartment_;
species MKKK in compartment_, MKKK_P in compartment_, MKK in compartment_;
species MKK_P in compartment_, MKK_PP in compartment_, MAPK in compartment_;
species MAPK_P in compartment_, MAPK_PP in compartment_;

// Reactions:
J0: MKKK => MKKK_P; (J0_V1*MKKK)/((1 + (MAPK_PP/J0_Ki)^J0_n)*(J0_K1 + MKKK));
J1: MKKK_P => MKKK; (J1_V2*MKKK_P)/(J1_KK2 + MKKK_P);
J2: MKK => MKK_P; (J2_k3*MKKK_P*MKK)/(J2_KK3 + MKK);
J3: MKK_P => MKK_PP; (J3_k4*MKKK_P*MKK_P)/(J3_KK4 + MKK_P);
J4: MKK_PP => MKK_P; (J4_V5*MKK_PP)/(J4_KK5 + MKK_PP);
J5: MKK_P => MKK; (J5_V6*MKK_P)/(J5_KK6 + MKK_P);
J6: MAPK => MAPK_P; (J6_k7*MKK_PP*MAPK)/(J6_KK7 + MAPK);

(continues on next page)

4.5. COMBINE & Inline OMEX 69

tellurium Documentation, Release 2.1.5

(continued from previous page)

J7: MAPK_P => MAPK_PP; (J7_k8*MKK_PP*MAPK_P)/(J7_KK8 + MAPK_P);
J8: MAPK_PP => MAPK_P; (J8_V9*MAPK_PP)/(J8_KK9 + MAPK_PP);
J9: MAPK_P => MAPK; (J9_V10*MAPK_P)/(J9_KK10 + MAPK_P);

// Species initializations:
MKKK = 90;
MKKK_P = 10;
MKK = 280;
MKK_P = 10;
MKK_PP = 10;
MAPK = 280;
MAPK_P = 10;
MAPK_PP = 10;

// Compartment initializations:
compartment_ = 1;

// Variable initializations:
J0_V1 = 2.5;
J0_Ki = 9;
J0_n = 1;
J0_K1 = 10;
J1_V2 = 0.25;
J1_KK2 = 8;
J2_k3 = 0.025;
J2_KK3 = 15;
J3_k4 = 0.025;
J3_KK4 = 15;
J4_V5 = 0.75;
J4_KK5 = 15;
J5_V6 = 0.75;
J5_KK6 = 15;
J6_k7 = 0.025;
J6_KK7 = 15;
J7_k8 = 0.025;
J7_KK8 = 15;
J8_V9 = 0.5;
J8_KK9 = 15;
J9_V10 = 0.5;
J9_KK10 = 15;

// Other declarations:
const compartment_, J0_V1, J0_Ki, J0_n, J0_K1, J1_V2, J1_KK2, J2_k3, J2_KK3;
const J3_k4, J3_KK4, J4_V5, J4_KK5, J5_V6, J5_KK6, J6_k7, J6_KK7, J7_k8;
const J7_KK8, J8_V9, J8_KK9, J9_V10, J9_KK10;
end
'''

phrasedml_str = '''
mod1 = model "case_09"
sim1 = simulate uniform_stochastic(0, 4000, 1000)
sim1 = simulate uniform(0, 4000, 1000)
task1 = run sim1 on mod1
repeat1 = repeat task1 for local.x in uniform(0, 10, 10), reset=true
plot "MAPK oscillations" repeat1.MAPK vs repeat1.time vs repeat1.MAPK_P, repeat1.

→˓MAPK vs repeat1.time vs repeat1.MAPK_PP, repeat1.MAPK vs repeat1.time vs repeat1.MKK
report repeat1.MAPK vs repeat1.time vs repeat1.MAPK_P, repeat1.MAPK vs repeat1.

→˓time vs repeat1.MAPK_PP, repeat1.MAPK vs repeat1.time vs repeat1.MKK (continues on next page)

70 Chapter 4. Usage Examples

tellurium Documentation, Release 2.1.5

(continued from previous page)

'''

create the inline OMEX string
inline_omex = '\n'.join([antimony_str, phrasedml_str])

execute the inline OMEX
te.executeInlineOmex(inline_omex)

4.6 Modeling Case Studies

This series of case studies shows some slight more advanced examples which correspond to common motifs in bio-
logical networks (negative feedback loops, etc.). To draw the network diagrams seen here, you will need graphviz
installed.

4.6.1 Preliminaries

In order to draw the network graphs in these examples (i.e. using r.draw()), you will need graphviz and pygraphviz
installed. Please consult the Graphviz documentation for instructions on installing it on your platform. If you cannot
install Graphviz and yraphviz, you can still run the following examples, but the network diagrams will not be generated.

Also, due to limitations in pygraphviz, these examples can only be run in the Jupyter notebook, not the Tellurium
notebook app.

Install pygraphviz (requires compilation)

Please run

4.6. Modeling Case Studies 71

http://www.graphviz.org/
http://tellurium.readthedocs.io/en/latest/installation.html#front-end-1-tellurium-notebook
http://tellurium.readthedocs.io/en/latest/installation.html#front-end-1-tellurium-notebook

tellurium Documentation, Release 2.1.5

<your-local-python-executable> -m pip install pygraphviz

from a terminal or command prompt to install pygraphviz. Then restart your kernel in this notebook (Language-
>Restart Running Kernel).

Troubleshooting Graphviz Installation

pygraphviz has known problems during installation on some platforms. On 64-bit Fedora Linux, we have been able to
use the following command to install pygraphviz:

/path/to/python3 -m pip install pygraphviz --install-option="--include-path=/usr/
→˓include/graphviz" --install-option="--library-path=/usr/lib64/graphviz/"

You may need to modify the library/include paths in the above command. Some Linux distributions put 64-bit libraries
in /usr/lib instead of /usr/lib64, in which case the command becomes:

/path/to/python3 -m pip install pygraphviz --install-option="--include-path=/usr/
→˓include/graphviz" --install-option="--library-path=/usr/lib/graphviz/"

Case Studies

4.6.2 Activator system

import warnings
warnings.filterwarnings("ignore")

import tellurium as te
te.setDefaultPlottingEngine('matplotlib')

model Definition
r = te.loada ('''

#J1: S1 -> S2; Activator*kcat1*S1/(Km1+S1);
J1: S1 -> S2; SE2*kcat1*S1/(Km1+S1);
J2: S2 -> S1; Vm2*S2/(Km2+S2);

J3: T1 -> T2; S2*kcat3*T1/(Km3+T1);
J4: T2 -> T1; Vm4*T2/(Km4+T2);

J5: -> E2; Vf5/(Ks5+T2^h5);
J6: -> E3; Vf6*T2^h6/(Ks6+T2^h6);

#J7: -> E1;
J8: -> S; kcat8*E1

J9: E2 -> ; k9*E2;
J10:E3 -> ; k10*E3;

J11: S -> SE2; E2*kcat11*S/(Km11+S);
J12: S -> SE3; E3*kcat12*S/(Km12+S);

J13: SE2 -> ; SE2*kcat13;
J14: SE3 -> ; SE3*kcat14;

Km1 = 0.01; Km2 = 0.01; Km3 = 0.01; Km4 = 0.01; Km11 = 1; Km12 = 0.1;

(continues on next page)

72 Chapter 4. Usage Examples

https://github.com/pygraphviz/pygraphviz/issues/72

tellurium Documentation, Release 2.1.5

(continued from previous page)

S1 = 6; S2 =0.1; T1=6; T2 = 0.1;
SE2 = 0; SE3=0;
S=0;
E2 = 0; E3 = 0;
kcat1 = 0.1; kcat3 = 3; kcat8 =1; kcat11 = 1; kcat12 = 1; kcat13 = 0.1;

→˓kcat14=0.1;
E1 = 1;
k9 = 0.1; k10=0.1;
Vf6 = 1;
Vf5 = 3;
Vm2 = 0.1;
Vm4 = 2;
h6 = 2; h5=2;
Ks6 = 1; Ks5 = 1;
Activator = 0;

at (time > 100): Activator = 5;
''')
r.draw(width=300)
result = r.simulate (0, 300, 2000, ['time', 'J11', 'J12']);
r.plot(result);

4.6. Modeling Case Studies 73

tellurium Documentation, Release 2.1.5

74 Chapter 4. Usage Examples

tellurium Documentation, Release 2.1.5

4.6.3 Feedback oscillations

http://tellurium.analogmachine.org/testing/
import tellurium as te
r = te.loada ('''
model feedback()

// Reactions:
J0: $X0 -> S1; (VM1 * (X0 - S1/Keq1))/(1 + X0 + S1 + S4^h);
J1: S1 -> S2; (10 * S1 - 2 * S2) / (1 + S1 + S2);
J2: S2 -> S3; (10 * S2 - 2 * S3) / (1 + S2 + S3);
J3: S3 -> S4; (10 * S3 - 2 * S4) / (1 + S3 + S4);
J4: S4 -> $X1; (V4 * S4) / (KS4 + S4);

// Species initializations:
S1 = 0; S2 = 0; S3 = 0;
S4 = 0; X0 = 10; X1 = 0;

// Variable initialization:
VM1 = 10; Keq1 = 10; h = 10; V4 = 2.5; KS4 = 0.5;

end''')

r.integrator.setValue('variable_step_size', True)
res = r.simulate(0, 40)
r.plot()

4.6. Modeling Case Studies 75

tellurium Documentation, Release 2.1.5

4.6.4 Bistable System

Example showing how to to multiple time course simulations, merging the data and plotting it onto one platting
surface. Alternative is to use setHold()

Model is a bistable system, simulations start with different initial conditions resulting in different steady states reached.

import tellurium as te
import numpy as np

r = te.loada ('''
$Xo -> S1; 1 + Xo*(32+(S1/0.75)^3.2)/(1 +(S1/4.3)^3.2);
S1 -> $X1; k1*S1;

Xo = 0.09; X1 = 0.0;
S1 = 0.5; k1 = 3.2;
''')
print(r.selections)

initValue = 0.05
m = r.simulate (0, 4, 100, selections=["time", "S1"])

for i in range (0,12):
r.reset()
r['[S1]'] = initValue
res = r.simulate (0, 4, 100, selections=["S1"])
m = np.concatenate([m, res], axis=1)
initValue += 1

te.plotArray(m, color="black", alpha=0.7, loc=None,
xlabel="time", ylabel="[S1]", title="Bistable system");

76 Chapter 4. Usage Examples

tellurium Documentation, Release 2.1.5

['time', '[S1]']

4.6.5 Events

import tellurium as te
import matplotlib.pyplot as plt

Example showing use of events and how to set the y axis limits
r = te.loada ('''

$Xo -> S; Xo/(km + S^h);
S -> $w; k1*S;

initialize
h = 1; # Hill coefficient
k1 = 1; km = 0.1;
S = 1.5; Xo = 2

at (time > 10): Xo = 5;
at (time > 20): Xo = 2;

''')

m1 = r.simulate (0, 30, 200, ['time', 'Xo', 'S'])
r.plot(ylim=(0,10))

4.6. Modeling Case Studies 77

tellurium Documentation, Release 2.1.5

4.6.6 Gene network

import tellurium as te
import numpy

Model describes a cascade of two genes. First gene is activated
second gene is repressed. Uses events to change the input
to the gene regulatory network

r = te.loada ('''
v1: -> P1; Vm1*I^4/(Km1 + I^4);
v2: P1 -> ; k1*P1;
v3: -> P2; Vm2/(Km2 + P1^4);
v4: P2 -> ; k2*P2;

at (time > 60): I = 10;
at (time > 100): I = 0.01;
Vm1 = 5; Vm2 = 6; Km1 = 0.5; Km2 = 0.4;
k1 = 0.1; k2 = 0.1;
I = 0.01;

''')

result = r.simulate (0, 200, 100)
r.plot()

78 Chapter 4. Usage Examples

tellurium Documentation, Release 2.1.5

4.6.7 Stoichiometric matrix

import tellurium as te

Example of using antimony to create a stoichiometry matrix
r = te.loada('''
J1: -> S1; v1;
J2: S1 -> S2; v2;
J3: S2 -> ; v3;
J4: S3 -> S1; v4;
J5: S3 -> S2; v5;
J6: -> S3; v6;

v1=1; v2=1; v3=1; v4=1; v5=1; v6=1;
''')

print(r.getFullStoichiometryMatrix())
r.draw()

J1, J2, J3, J4, J5, J6
S1 [[1, -1, 0, 1, 0, 0],
S2 [0, 1, -1, 0, 1, 0],
S3 [0, 0, 0, -1, -1, 1]]

4.6. Modeling Case Studies 79

tellurium Documentation, Release 2.1.5

4.6.8 Lorenz attractor

Example showing how to describe a model using ODES. Example implements the Lorenz attractor.

import tellurium as te

r = te.loada ('''
x' = sigma*(y - x);
y' = x*(rho - z) - y;
z' = x*y - beta*z;

x = 0.96259; y = 2.07272; z = 18.65888;

sigma = 10; rho = 28; beta = 2.67;
''')

result = r.simulate (0, 20, 1000, ['time', 'x', 'y', 'z'])
r.plot()

80 Chapter 4. Usage Examples

tellurium Documentation, Release 2.1.5

4.6.9 Time Course Parameter Scan

Do 5 simulations on a simple model, for each simulation a parameter, k1 is changed. The script merges the data
together and plots the merged array on to one plot.

import tellurium as te
import numpy as np

r = te.loada ('''
J1: $X0 -> S1; k1*X0;
J2: S1 -> $X1; k2*S1;

X0 = 1.0; S1 = 0.0; X1 = 0.0;
k1 = 0.4; k2 = 2.3;

''')

m = r.simulate (0, 4, 100, ["Time", "S1"])
for i in range (0,4):

r.k1 = r.k1 + 0.1
r.reset()
m = np.hstack([m, r.simulate(0, 4, 100, ['S1'])])

use plotArray to plot merged data
te.plotArray(m)
pass

4.6. Modeling Case Studies 81

tellurium Documentation, Release 2.1.5

4.6.10 Merge multiple simulations

Example of merging multiple simulations. In between simulations a parameter is changed.

import tellurium as te
import numpy

r = te.loada ('''
Model Definition
v1: $Xo -> S1; k1*Xo;
v2: S1 -> $w; k2*S1;

Initialize constants
k1 = 1; k2 = 1; S1 = 15; Xo = 1;

''')

Time course simulation
m1 = r.simulate (0, 15, 100, ["Time","S1"]);
r.k1 = r.k1 * 6;
m2 = r.simulate (15, 40, 100, ["Time","S1"]);
r.k1 = r.k1 / 6;
m3 = r.simulate (40, 60, 100, ["Time","S1"]);

m = numpy.vstack([m1, m2, m3])
p = te.plot(m[:,0], m[:,1], name='trace1')

82 Chapter 4. Usage Examples

tellurium Documentation, Release 2.1.5

4.6.11 Relaxation oscillator

Oscillator that uses positive and negative feedback. An example of a relaxation oscillator.

import tellurium as te

r = te.loada ('''
v1: $Xo -> S1; k1*Xo;
v2: S1 -> S2; k2*S1*S2^h/(10 + S2^h) + k3*S1;
v3: S2 -> $w; k4*S2;

Initialize
h = 2; # Hill coefficient
k1 = 1; k2 = 2; Xo = 1;
k3 = 0.02; k4 = 1;

''')

result = r.simulate(0, 100, 100)
r.plot(result);

4.6. Modeling Case Studies 83

tellurium Documentation, Release 2.1.5

4.6.12 Scan hill coefficient

Negative Feedback model where we scan over the value of the Hill coefficient.

import tellurium as te
import numpy as np

r = te.loada ('''
// Reactions:
J0: $X0 => S1; (J0_VM1*(X0 - S1/J0_Keq1))/(1 + X0 + S1 + S4^J0_h);
J1: S1 => S2; (10*S1 - 2*S2)/(1 + S1 + S2);
J2: S2 => S3; (10*S2 - 2*S3)/(1 + S2 + S3);
J3: S3 => S4; (10*S3 - 2*S4)/(1 + S3 + S4);
J4: S4 => $X1; (J4_V4*S4)/(J4_KS4 + S4);

// Species initializations:
S1 = 0;
S2 = 0;
S3 = 0;
S4 = 0;
X0 = 10;
X1 = 0;

// Variable initializations:
J0_VM1 = 10;
J0_Keq1 = 10;
J0_h = 2;
J4_V4 = 2.5;
J4_KS4 = 0.5;

// Other declarations:
const J0_VM1, J0_Keq1, J0_h, J4_V4, J4_KS4;

''')

(continues on next page)

84 Chapter 4. Usage Examples

tellurium Documentation, Release 2.1.5

(continued from previous page)

time vector
result = r.simulate (0, 20, 201, ['time'])

h_values = [r.J0_h + k for k in range(0,8)]
for h in h_values:

r.reset()
r.J0_h = h
m = r.simulate(0, 20, 201, ['S1'])
result = np.hstack([result, m])

te.plotArray(result, labels=['h={}'.format(int(h)) for h in h_values])
pass

4.6.13 Compare simulations

import tellurium as te

r = te.loada ('''
v1: $Xo -> S1; k1*Xo;
v2: S1 -> $w; k2*S1;

//initialize. Deterministic process.
k1 = 1; k2 = 1; S1 = 20; Xo = 1;

''')

m1 = r.simulate (0,20,100);

Stochastic process
r.resetToOrigin()
r.setSeed(1234)

(continues on next page)

4.6. Modeling Case Studies 85

tellurium Documentation, Release 2.1.5

(continued from previous page)

m2 = r.gillespie(0, 20, 100, ['time', 'S1'])

plot all the results together
te.plotArray(m1, color="black", show=False)
te.plotArray(m2, color="blue");

4.6.14 Sinus injection

Example that show how to inject a sinusoidal into the model and use events to switch it off and on.

import tellurium as te
import numpy

r = te.loada ('''
Inject sin wave into model
Xo := sin (time*0.5)*switch + 2;

Model Definition
v1: $Xo -> S1; k1*Xo;
v2: S1 -> S2; k2*S1;
v3: S2 -> $X1; k3*S2;

at (time > 40): switch = 1;
at (time > 80): switch = 0.5;

Initialize constants
k1 = 1; k2 = 1; k3 = 3; S1 = 3;
S2 = 0;
switch = 0;

''')

(continues on next page)

86 Chapter 4. Usage Examples

tellurium Documentation, Release 2.1.5

(continued from previous page)

result = r.simulate (0, 100, 200, ['time', 'S1', 'S2'])
r.plot(result);

4.6.15 Protein phosphorylation cycle

Simple protein phosphorylation cycle. Steady state concentation of the phosphorylated protein is plotted as a function
of the cycle kinase. In addition, the plot is repeated for various values of Km.

import tellurium as te
import numpy as np
import matplotlib.pyplot as plt

r = te.loada ('''
S1 -> S2; k1*S1/(Km1 + S1);
S2 -> S1; k2*S2/(Km2 + S2);

k1 = 0.1; k2 = 0.4; S1 = 10; S2 = 0;
Km1 = 0.1; Km2 = 0.1;

''')

r.conservedMoietyAnalysis = True

for i in range (1,8):
numbers = np.linspace (0, 1.2, 200)
result = np.empty ([0,2])
for value in numbers:

r.k1 = value
r.steadyState()
row = np.array ([value, r.S2])
result = np.vstack ((result, row))

te.plotArray(result, show=False, labels=['Km1={}'.format(r.Km1)],

(continues on next page)

4.6. Modeling Case Studies 87

tellurium Documentation, Release 2.1.5

(continued from previous page)

resetColorCycle=False,
xlabel='k1', ylabel="S2",
title="Steady State S2 for different Km1 & Km2",
ylim=[-0.1, 11], grid=True)

r.k1 = 0.1
r.Km1 = r.Km1 + 0.5;
r.Km2 = r.Km2 + 0.5;

plt.show()

4.7 Miscellaneous

4.7.1 How to install additional packages

If you are using Tellurium notebook or Tellurium Spyder, you can install additional package using
installPackage function. In Tellurium Spyder, you can also install packages using included command Prompt.
For more information, see Running Command Prompt for Tellurium Spyder.

import tellurium as te
install cobra (https://github.com/opencobra/cobrapy)
te.installPackage('cobra')
update cobra to latest version
te.upgradePackage('cobra')
remove cobra
te.removePackage('cobra')

88 Chapter 4. Usage Examples

https://tellurium.readthedocs.io/en/latest/walkthrough.html#running-command-prompt-for-tellurium-spyder

CHAPTER 5

Antimony Reference

Different authoring tools have different ways of allowing the user to build models, and these approaches have individ-
ual advantages and disadvantages. In Tellurium, the main approach to building models is to use a human-readable,
text-based definition language called Antimony. Antimony is designed to interconvert between the SBML standard
and a shorthand form that allows editing without the structure and overhead of working with XML directly. This guide
will show you the intricacies of working with Antimony.

5.1 Background

Since the advent of SBML (the Systems Biology Markup Language) computer models of biological systems have been
able to be transferred easily between different labs and different computer programs without loss of specificity. But
SBML was not designed to be readable or writable by humans, only by computer programs, so other programs have
sprung up to allow users to more easily create the models they need.

Many of these programs are GUI-based, and allow drag-and-drop editing of species and reactions, such as CellDe-
signer. A few, like Jarnac, take a text-based approach, and allow the creation of models in a text editor. This has
the advantage of being usable in an automated setting, such as generating models from a template metalanguage
(TemplateSB is such a metalanguage for Antimony) and readable by others without translation. Antimony (so named
because the chemical symbol of the element is ‘Sb’) was designed as a successor to Jarnac’s model definition lan-
guage, with some new features that mesh with newer elements of SBML, some new features we feel will be generally
applicable, and some new features that are designed to aid the creation of genetic networks specifically. Antimony is
available as a library and a Python package.

Antimony is the main method of building models in Tellurium. Its main features include:

• Easily define species, reactions, compartments, events, and other elements of a biological model.

• Package and re-use models as modules with defined or implied interfaces.

• Create ‘DNA strand’ elements, which can pass reaction rates to downstream elements, and inherit and modify
reaction rates from upstream elements.

89

http://antimony.sourceforge.net/
http://www.celldesigner.org/
http://www.celldesigner.org/
https://github.com/BioModelTools/TemplateSB

tellurium Documentation, Release 2.1.5

5.2 Change Log

The 2.12 release added the ability to save extra ‘annotation-like’ elements from the ‘distributions’ SBML package,
and fixed numerous bugs in cvterm/SBOterm setting.

The 2.11 release quashed all known memory leaks, and added the ability to define synthesis reactions with no id (i.e.
‘ -> S1; k1’)

The 2.10 release updated support for distributions to the latest SBML release of that package, updated the default
version of SBML to Level 3 version 2, added support for setting cvterms and the SBOterm,

The 2.9.1 release added the ability to convert to SBML Level 3 version 2, and SBML Level 2 version 5.

The 2.9.0 release of Antimony was largely a maintenance release: numerous bugs were fixed, and installation was
streamlined, particularly for Python and conda.

The 2.8.0 release of Antimony included support for the SBML ‘Flux Balance Constraints’ package (version 1), as well
as constraints in general.

In the 2.7.1 release of Antimony, species marked ‘hasOnlySubstanceUnits=true’ in SBML now have a corresponding
definition in Antimony: ‘species substanceOnly S1, S2’.

In the 2.7 release of Antimony, QTAntimony got several new improvements, including displayed line numbers,
find/replace, and a ‘go to line’ option. A few new syntaxes were also added, including the ability to concisely define
elements plus their assignment rules (‘species S1 in C := 3+p’), and to define submodules with implied parameters
(‘A: mod1(1,2)’).

In the 2.6 release of Antimony, some features of hierarchical translation (deletions in particular) were made more ro-
bust, and a number of built-in distribution functions were added, which are translated to SBML using the ‘distributions’
package, as well as using custom annotations

In the 2.5 release of Antimony, translation of Antimony concepts to and from the Hierarchical Model Composition
package was developed further to be much more robust, and a new test system was added to ensure that Antimony’s
‘flattening’ routine (which exports plain SBML) matches libSBML’s flattening routine.

In the 2.4 release of Antimony, use of the Hierarchical Model Composition package constructs in the SBML translation
became standard, due to the package being fully accepted by the SBML community.

In the 2.2/2.3 release of Antimony, units, conversion factors, and deletions were added.

In the 2.1 version of Antimony, the ‘import‘ handling became much more robust, and it became additionally possible
to export hierarchical models using the Hierarchical Model Composition package constructs for SBML level 3.

In the 2.0 version of Antimony, it became possible to export models as CellML. This requires the use of the CellML
API, which is now available as an SDK. Hierarchical models are exported using CellML’s hierarchy, translated to
accommodate their ‘black box’ requirements.

5.3 Contents

Contents

• Antimony Reference

– Background

– Change Log

– Contents

90 Chapter 5. Antimony Reference

tellurium Documentation, Release 2.1.5

– Introduction & Basics

– Examples

* Comments

* Reactions

* Rate Laws and Initializing Values

* Boundary Species

* Compartments

* Assignments

* Assignments in Time

* Piecewise Assignments

* Events

* Function Definitions

* Modular Models

* Importing Files

– Simulating Models

– Language Reference

* Species and Reactions

* Modules

* Module conversion factors

* Submodel deletions

* Constant and variable symbols

* Compartments

* Events

* Assignment Rules

* Signals

· Step Input

· Ramp

· Ramp then Stop

· Pulse

· Sinusoidal Input

* Rate Rules

* Display Names

* Comments

* Units

* DNA Strands

5.3. Contents 91

tellurium Documentation, Release 2.1.5

* Interactions

* Function Definitions

* Uncertainty information

* SBO and cvterms

* Flux Balance Constraints

* Other files

* Importing and Exporting Antimony Models

* Appendix: Converting between SBML and Antimony

* Further Reading

5.4 Introduction & Basics

Creating a model in Antimony is designed to be very straightforward and simple. Model elements are created and
defined in text, with a simple syntax.

The most common way to use Antimony is to create a reaction network, where processes are defined wherein some
elements are consumed and other elements are created. Using the language of SBML, the processes are called ‘reac-
tions’ and the elements are called ‘species’, but any set of processes and elements may be modeled in this way. The
syntax for defining a reaction in Antimony is to list the species being consumed, separated by a +, followed by an
arrow ->, followed by another list of species being created, followed by a semicolon. If this reaction has a defined
mathematical rate at which this happens, that rate can be listed next:

S1 -> S2; k1*S1

The above model defines a reaction where S1 is converted to S2 at a rate of ‘k1*S1‘.

This model cannot be simulated, however, because a simulator would not know what the conditions are to start the
simulation. These values can be set by using an equals sign: cillator:

S1 -> S2; k1*S1
S1 = 10
S2 = 0
k1 = 0.1

The above, then, is a complete model that can be simulated by any software that understands SBML (to which Anti-
mony models can be converted).

If you want to give your model a name, you can do that by wrapping it with the text: model [name]
[reactions, etc.] end:

Simple UniUni reaction with first-order mass-action kinetics
model example1

S1 -> S2; k1*S1
S1 = 10
S2 = 0
k1 = 0.1

end

In subsequent examples in this tutorial, we’ll be using this syntax to name the examples, but for simple models, the
name is optional. Later, when we discuss submodels, this will become more important.

92 Chapter 5. Antimony Reference

tellurium Documentation, Release 2.1.5

There are many more complicated options in Antimony, but the above has enough power to define a wide variety of
models, such as this oscillator:

model oscli
#Reactions:
J0: -> S1; J0_v0
J1: S1 -> ; J1_k3*S1
J2: S1 -> S2; (J2_k1*S1 - J2_k2*S2)*(1 + J2_c*S2^J2_q)
J3: S2 -> ; J3_k2*S2

Species initializations:
S1 = 0
S2 = 1

Variable initializations:
J0_v0 = 8
J1_k3 = 0
J2_k1 = 1
J2_k2 = 0
J2_c = 1
J2_q = 3
J3_k2 = 5

end

5.5 Examples

5.5.1 Comments

Single-line comments in Antimony can be created using the # or // symbols, and multi-line comments can be created
by surrounding them with /* [comments] */.

/* This is an example of a multi-line
comment for this tutorial */

model example2
J0: S1 -> S2 + S3; k1*S1 #Mass-action kinetics
S1 = 10 #The initial concentration of S1
S2 = 0 #The initial concentration of S2
S3 = 3 #The initial concentration of S3
k1 = 0.1 #The value of the kinetic parameter from J0.

end

The names of the reaction and the model are saved in SBML, but any comments are not.

5.5.2 Reactions

Reactions can be created with multiple reactants and/or products, and the stoichiometries can be set by adding a
number before the name of the species:

Production of S1
-> S1; k0

Conversion from S1 to S2
S1 -> S2; k1*S1
S3 is the adduct of S1 and S2

(continues on next page)

5.5. Examples 93

tellurium Documentation, Release 2.1.5

(continued from previous page)

S1 + S2 -> S3; k2*S1*S2
Dimerization of S1
2 S1 -> S2; k3*S1*S1
More complex stoichiometry
S1 + 2 S2 -> 3 S3 + 5 S4; k4*S1*S2*S2
Degradation of S4
S4 -> ; k5*S4

5.5.3 Rate Laws and Initializing Values

Reactions can be defined with a wide variety of rate laws

model pathway()
Examples of different rate laws and initialization

S1 -> S2; k1*S1
S2 -> S3; k2*S2 - k3*S3
S3 -> S4; Vm*S3/(Km + S3)
S4 -> S5; Vm*S4^n/(Km + S4)^n

S1 = 10
S2 = 0
S3 = 0
S4 = 0
S5 = 0
k1 = 0.1
k2 = 0.2
k3 = 0.2
Vm = 6.7
Km = 1E-3
n = 4

end

5.5.4 Boundary Species

Boundary species are those species which are unaffected by the model. Usually this means they are fixed. There are
two ways to declare boundary species.

1) Using a dollar sign to indicate that a particular species is fixed:

model pathway()
Example of using $ to fix species

$S1 -> S2; k1*S1
S2 -> S3; k2*S2
S3 -> $S4; k3*S3

end

2) Using the const keyword to declare species are fixed:

model pathway()
Examples of using the const keyword to fix species

(continues on next page)

94 Chapter 5. Antimony Reference

tellurium Documentation, Release 2.1.5

(continued from previous page)

const S1, S4
S1 -> S2; k1*S1
S2 -> S3; k2*S2
S3 -> S4; k3*S3

end

5.5.5 Compartments

For multi-compartment models, or models where the compartment size changes over time, you can define the compart-
ments in Antimony by using the compartment keyword, and designate species as being in particular compartments
with the in keyword:

model pathway()
Examples of different compartments

compartment cytoplasm = 1.5, mitochondria = 2.6
const S1 in mitochondria
var S2 in cytoplasm
var S3 in cytoplasm
const S4 in cytoplasm

S1 -> S2; k1*S1
S2 -> S3; k2*S2
S3 -> S4; k3*S3

end

5.5.6 Assignments

You can also initialize elements with more complicated formulas than simple numbers:

model pathway()
Examples of different assignments

A = 1.2
k1 = 2.3 + A
k2 = sin(0.5)
k3 = k2/k1

S1 -> S2; k1*S1
S2 -> S3; k2*S2
S3 -> S4; k3*S3

end

5.5.7 Assignments in Time

If you want to define some elements as changing in time, you can either define the formula a variable equals at all
points in time with a :=, or you can define how a variable changes in time using X' (a rate rule) in which case you’ll
also need to define its initial starting value. The keyword time represents time.

model pathway()
Examples of assignments that change in time

(continues on next page)

5.5. Examples 95

https://tellurium.readthedocs.io/en/latest/antimony.html#rate-rules/

tellurium Documentation, Release 2.1.5

(continued from previous page)

k1 := sin(time) # k1 will always equal the sine of time
k2 = 0.2
k2' = k1 #' k2 starts at 0.2, and changes according to the value

of k1: d(k2)/dt = k1

S1 -> S2; k1*S1
S2 -> S3; k2*S2

end

5.5.8 Piecewise Assignments

You can use piecewise to define piecewise assignments.

model pathway()
Examples of piecewise assignments
$Xo -> S1; k1*Xo;
S1 -> S2; k2*S1;
S2 -> $X1; k3*S2;

k1 := piecewise(0.1, time > 50, 20)

k2 = 0.45; k3 = 0.34; Xo = 5;
end

Above will return k1 = 0.1 if time > 50 and 20 otherwise. A more complicated piecewise assignment can be
defined as well.

model pathway()
$Xo -> S1; k1*Xo;
S1 -> S2; k2*S1;
S2 -> $X1; k3*S2;

k1 := piecewise(5, time > 20, 8, S2 < 100, 15)

k2 = 0.45; k3 = 0.34; Xo = 5;
end

The above piecewise call will return 5 if time > 20, else it will return 8 if S2 < 100, else it will return 15. The piecewise
function has this general “do this if this is true, else . . . ” pattern, and can be extended to include as may conditions as
needed.

5.5.9 Events

Events are discontinuities in model simulations that change the definitions of one or more symbols at the moment when
certain conditions apply. The condition is expressed as a boolean formula, and the definition changes are expressed as
assignments, using the keyword at:

at (x>5): y=3, x=r+2

In a model with this event, at any moment when x transitions from being less than or equal to 5 to being greater to five,
y will be assigned the value of 3, and x will be assigned the value of r+2, using whatever value r has at that moment.
The following model sees the conversion of S1 to S2 until a threshold is reached, at which point the cycle is reset.

96 Chapter 5. Antimony Reference

tellurium Documentation, Release 2.1.5

model reset()

S1 -> S2; k1*S1

E1: at (S2>9): S2=0, S1=10

S1 = 10
S2 = 0
k1 = 0.5

end

For more advanced usage of events, see Antimony’s reference documentation on events.

5.5.10 Function Definitions

You may create user-defined functions in a similar fashion to the way you create modules, and then use these func-
tions in Antimony equations. These functions must be basic single equations, and act in a similar manner to macro
expansions. As an example, you might define the quadratic equation and use it in a later equation as follows:

function quadratic(x, a, b, c)
a*x^2 + b*x + c

end

model quad1
S3 := quadratic(s1, k1, k2, k3);

end

This effectively defines S3 to always equal the equation k1*s1^2 + k2*s1 + k3.

5.5.11 Modular Models

Antimony was actually originally designed to allow the modular creation of models, and has a basic syntax set up
to do so. For a full discussion of Antimony modularity, see the full documentation, but at the most basic level, you
define a re-usable module with the ‘model’ syntax, followed by parentheses where you define the elements you wish
to expose, then import it by using the model’s name, and the local variables you want to connect to that module

This creates a model 'side_reaction', exposing the variables 'S' and 'k1':
model side_reaction(S, k1)

J0: S + E -> SE; k1*k2*S*E - k2*ES;
E = 3;
SE = E+S;
k2 = 0.4;

end

In this model, 'side_reaction' is imported twice:
model full_pathway

-> S1; k1
S1 -> S2; k2*S1
S2 -> ; k3*S2

A: side_reaction(S1, k4)
B: side_reaction(S2, k5)

S1 = 0

(continues on next page)

5.5. Examples 97

https://tellurium.readthedocs.io/en/latest/antimony.html#id3

tellurium Documentation, Release 2.1.5

(continued from previous page)

S2 = 0
k1 = 0.3
k2 = 2.3
k3 = 3.5
k4 = 0.0004
k5 = 1

end

In this model, A is a submodel that creates a side-reaction of S1 with A.E and A.SE, and B is a submodel that creates
a side-reaction of S2 with B.E and B.SE. It is important to note that there is no connection between A.E and B.E
(nor A.ES and B.ES): they are completely different species in the model.

5.5.12 Importing Files

More than one file may be used to define a set of modules in Antimony through the use of the ‘import‘ keyword. At
any point in the file outside of a module definition, use the word ‘import‘ followed by the name of the file in quotation
marks, and Antimony will include the modules defined in that file as if they had been cut and pasted into your file at
that point. SBML files may also be included in this way:

import "models1.txt"
import "oscli.xml"

model mod2()
A: mod1();
B: oscli();

end

In this example, the file models1.txt is an Antimony file that defines the module mod1, and the file oscli.xml
is an SBML file that defines a model named oscli. The Antimony module mod2 may then use modules from either
or both of the other imported files.

5.6 Simulating Models

Antimony models can be converted into a RoadRunner instance, which can be used to simulate the model. The
function loada converts Antimony into a simulator instance. This example shows how to get the Antimony
/ SBML representation of the current state of the model. After running a simulation, the concentraions of the
state variables will change. You can retrieve the Antimony representation of the current state of the model using
getCurrentAntimony on the RoadRunner instance. This example shows the change in the Antimony / SBML
representation. The example also shows how to use variable stepping in a simulation.

import tellurium as te

print('-' * 80)
te.printVersionInfo()
print('-' * 80)

r = te.loada('''
model example

p1 = 0;
at time>=10: p1=10;
at time>=20: p1=0;

(continues on next page)

98 Chapter 5. Antimony Reference

tellurium Documentation, Release 2.1.5

(continued from previous page)

end
''')

convert current state of model back to Antimony / SBML
ant_str_before = r.getCurrentAntimony()
sbml_str_before = r.getCurrentSBML()
r.exportToSBML('/path/to/test.xml')

set selections
r.selections=['time', 'p1']
r.integrator.setValue("variable_step_size", False)
r.resetAll()
s1 = r.simulate(0, 40, 40)
r.plot()
hitting the trigger point directly works
r.resetAll()
s2 = r.simulate(0, 40, 21)
r.plot()

variable step size also does not work
r.integrator.setValue("variable_step_size", True)
r.resetAll()
s3 = r.simulate(0, 40)
r.plot()

convert current state of model back to Antimony / SBML
ant_str_after = r.getCurrentAntimony()
sbml_str_after = r.getCurrentSBML()

import difflib
print("Comparing Antimony at time 0 & 40 (expect no differences)")
print('\n'.join(list(difflib.unified_diff(ant_str_before.splitlines(), ant_str_after.
→˓splitlines(), fromfile="before.sb", tofile="after.sb"))))

now simulate up to time 15
r.resetAll()
s4 = r.simulate(0, 15)
r.plot()

convert current state of model back to Antimony / SBML
ant_str_after2 = r.getCurrentAntimony()
sbml_str_after2 = r.getCurrentSBML()

print("Comparing Antimony at time 0 & 15")
print('\n'.join(list(difflib.unified_diff(ant_str_before.splitlines(), ant_str_after2.
→˓splitlines(), fromfile="before.sb", tofile="after.sb"))))

--
tellurium : 2.1.0
roadrunner : 1.5.1
antimony : 2.9.4
libsbml : 5.15.0
libsedml : 0.4.3
phrasedml : 1.0.9
--

5.6. Simulating Models 99

tellurium Documentation, Release 2.1.5

100 Chapter 5. Antimony Reference

tellurium Documentation, Release 2.1.5

Comparing Antimony at time 0 & 40 (expect no differences)

Comparing Antimony at time 0 & 15
--- before.sb

+++ after.sb

@@ -6,7 +6,7 @@

_E1: at time >= 20: p1 = 0;

(continues on next page)

5.6. Simulating Models 101

tellurium Documentation, Release 2.1.5

(continued from previous page)

// Variable initializations:
- p1 = 0;
+ p1 = 10;

// Other declarations:
var p1;

r.getSimulationData()

time, p1
[[0, 0],
[0.000514839, 0],
[5.1489, 0],
[10, 0],
[10, 10],
[10.0002, 10],
[12.2588, 10],
[15, 10]]

5.7 Language Reference

5.7.1 Species and Reactions

The simplest Antimony file may simply have a list of reactions containing species, along with some initializations.
Reactions are written as two lists of species, separated by a ->, and followed by a semicolon:

S1 + E -> ES;

Optionally, you may provide a reaction rate for the reaction by including a mathematical expression after the semi-
colon, followed by another semicolon:

S1 + E -> ES; k1*k2*S1*E - k2*ES;

You may also give the reaction a name by prepending the name followed by a colon:

J0: S1 + E -> ES; k1*k2*S1*E - k2*ES;

The same effect can be achieved by setting the reaction rate separately, by assigning the reaction rate to the reaction
name with an =:

J0: S1 + E -> ES;
J0 = k1*k2*S1*E - k2*ES;

You may even define them in the opposite order-they are all ways of saying the same thing.

If you want, you can define a reaction to be irreversible by using => instead of ->:

J0: S1 + E => ES;

102 Chapter 5. Antimony Reference

tellurium Documentation, Release 2.1.5

However, if you additionally provide a reaction rate, that rate is not checked to ensure that it is compatible with an
irreversible reaction.

At this point, Antimony will make several assumptions about your model. It will assume (and require) that all symbols
that appear in the reaction itself are species. Any symbol that appears elsewhere that is not used or defined as a species
is ‘undefined‘; ‘undefined‘ symbols may later be declared or used as species or as ‘formulas‘, Antimony’s term for
constants and packaged equations like SBML’s assignment rules. In the above example, k1 and k2 are (thus far)
undefined symbols, which may be assigned straightforwardly:

J0: S1 + E -> ES; k1*k2*S1*E - k2*ES;
k1 = 3;
k2 = 1.4;

More complicated expressions are also allowed, as are the creation of symbols which exist only to simplify or clarify
other expressions:

pH = 7;
k3 = -log10(pH);

The initial concentrations of species are defined in exactly the same way as formulas, and may be just as complex (or
simple):

S1 = 2;
E = 3;
ES = S1 + E;

Order for any of the above (and in general in Antimony) does not matter at all: you may use a symbol before defining
it, or define it before using it. As long as you do not use the same symbol in an incompatible context (such as using the
same name as a reaction and a species), your resulting model will still be valid. Antimony files written by libAntimony
will adhere to a standard format of defining symbols, but this is not required.

5.7.2 Modules

Antimony input files may define several different models, and may use previously-defined models as parts of newly-
defined models. Each different model is known as a ‘module‘, and is minimally defined by putting the keyword
‘model‘ (or ‘module‘, if you like) and the name you want to give the module at the beginning of the model definitions
you wish to encapsulate, and putting the keyword ‘end‘ at the end:

model example
S + E -> ES;

end

After this module is defined, it can be used as a part of another model (this is the one time that order matters in
Antimony). To import a module into another module, simply use the name of the module, followed by parentheses:

model example
S + E -> ES;

end

model example2
example();

end

This is usually not very helpful in and of itself-you’ll likely want to give the submodule a name so you can refer to the
things inside it. To do this, prepend a name followed by a colon:

5.7. Language Reference 103

tellurium Documentation, Release 2.1.5

model example2
A: example();

end

Now, you can modify or define elements in the submodule by referring to symbols in the submodule by name,
prepended with the name you’ve given the module, followed by a .:

model example2
A: example();
A.S = 3;

end

This results in a model with a single reaction A.S + A.E -> A.ES and a single initial condition A.S = 3.

You may also import multiple copies of modules, and modules that themselves contain submodules:

model example3
A: example();
B: example();
C: example2();

end

This would result in a model with three reactions and a single initial condition.

A.S + A.E -> A.ES
B.S + B.E -> B.ES
C.A.S + C.A.E -> C.A.ES
C.A.S = 3;

You can also use the species defined in submodules in new reactions:

model example4
A: example();
A.S -> ; kdeg*A.S;

end

When combining multiple submodules, you can also ‘attach’ them to each other by declaring that a species in one
submodule is the same species as is found in a different submodule by using the is keyword A.S is B.S. For
example, let’s say that we have a species which is known to bind reversibly to two different species. You could set this
up as the following:

model side_reaction
J0: S + E -> SE; k1*k2*S*E - k2*ES;
S = 5;
E = 3;
SE = E+S;
k1 = 1.2;
k2 = 0.4;

end

model full_reaction
A: side_reaction();
B: side_reaction();
A.S is B.S;

end

If you wanted, you could give the identical species a new name to more easily use it in the full_reaction module:

104 Chapter 5. Antimony Reference

tellurium Documentation, Release 2.1.5

model full_reaction
var species S;
A: side_reaction();
B: side_reaction()
A.S is S;
B.S is S;

end

In this system, S is involved in two reversible reactions with exactly the same reaction kinetics and initial concentra-
tions. Let’s now say the reaction rate of the second side-reaction takes the same form, but that the kinetics are twice
as fast, and the starting conditions are different:

model full_reaction
var species S;
A: side_reaction();
A.S is S;
B: side_reaction();
B.S is S;
B.k1 = 2.4;
B.k2 = 0.8;
B.E = 10;

end

Note that since we defined the initial concentration of SE as S + E, B.SE will now have a different initial concen-
tration, since B.E has been changed.

Finally, we add a third side reaction, one in which S binds irreversibly, and where the complex it forms degrades. We’ll
need a new reaction rate, and a whole new reaction as well:

model full_reaction
var species S;
A: side_reaction();
A.S is S;
B: side_reaction();
B.S is S;
B.k1 = 2.4;
B.k2 = 0.8;
B.E = 10;
C: side_reaction();
C.S is S;
C.J0 = C.k1*C.k2*S*C.E
J3: C.SE -> ; C.SE*k3;
k3 = 0.02;

end

Note that defining the reaction rate of C.J0 used the symbol S; exactly the same result would be obtained if we had
used C.S or even A.S or B.S. Antimony knows that those symbols all refer to the same species, and will give them
all the same name in subsequent output.

For convenience and style, modules may define an interface where some symbols in the module are more easily
renamed. To do this, first enclose a list of the symbols to export in parentheses after the name of the model when
defining it:

model side_reaction(S, k1)
J0: S + E -> SE; k1*k2*S*E - k2*ES;
S = 5;
E = 3;

(continues on next page)

5.7. Language Reference 105

tellurium Documentation, Release 2.1.5

(continued from previous page)

SE = E+S;
k1 = 1.2;
k2 = 0.4;

end

Then when you use that module as a submodule, you can provide a list of new symbols in parentheses:

A: side_reaction(spec2, k2);

is equivalent to writing:

A.S is spec2;
A.k1 is k2;

One thing to be aware of when using this method: Since wrapping definitions in a defined model is optional, all ‘bare’
declarations are defined to be in a default module with the name __main. If there are no unwrapped definitions,
__main will still exist, but will be empty.

As a final note: use of the is keyword is not restricted to elements inside submodules. As a result, if you wish to
change the name of an element (if, for example, you want the reactions to look simpler in Antimony, but wish to have
a more descriptive name in the exported SBML), you may use is as well:

A -> B;
A is ABA;
B is ABA8OH;

is equivalent to writing:

ABA -> ABA8OH;

5.7.3 Module conversion factors

Occasionally, the unit system of a submodel will not match the unit system of the containing model, for one or
more model elements. In this case, you can use conversion factor constructs to bring the submodule in line with the
containing model.

If time is different in the submodel (affecting reactions, rate rules, delay, and ‘time‘), use the timeconv keyword
when declaring the submodel:

A1: submodel(), timeconv=60;

This construct means that one unit of time in the submodel multiplied by the time conversion factor should equal one
unit of time in the parent model.

Reaction extent may also be different in the submodel when compared to the parent model, and may be converted with
the extentconv keyword:

A1: submodel(), extentconv=1000;

This construct means that one unit of reaction extent in the submodel multiplied by the extent conversion factor should
equal one unit of reaction extent in the parent model.

Both time and extent conversion factors may be numbers (as above) or they may be references to constant parameters.
They may also both be used at once:

106 Chapter 5. Antimony Reference

tellurium Documentation, Release 2.1.5

A1: submodel(), timeconv=tconv, extentconv=xconv;

Individual components of submodels may also be given conversion factors, when the is keyword is used. The follow-
ing two constructs are equivalent ways of applying conversion factor cf to the synchronized variables x and A1.y:

A1.y * cf is x;
A1.y is x / cf;

When flattened, all of these conversion factors will be incorporated into the mathematics.

5.7.4 Submodel deletions

Sometimes, an element of a submodel has to be removed entirely for the model to make sense as a whole. A degra-
dation reaction might need to be removed, for example, or a now-superfluous species. To delete an element of a
submodel, use the delete keyword:

delete A1.S1;

In this case, S1 will be removed from submodel A1, as will any reactions S1 participated in, plus any mathematical
formulas that had S1 in them.

Similarly, sometimes it is necessary to clear assignments and rules to a variable. To accomplish this, simply declare a
new assignment or rule for the variable, but leave it blank:

A1.S1 = ;
A1.S2 := ;
A1.S3' = ;

This will remove the appropriate initial assignment, assignment rule, or rate rule (respectively) from the submodel.

5.7.5 Constant and variable symbols

Some models have ‘boundary species’ in their reactions, or species whose concentrations do not change as a result of
participating in a reaction. To declare that a species is a boundary species, use the ‘const‘ keyword:

const S1;

While you’re declaring it, you may want to be more specific by using the ‘species‘ keyword:

const species S1;

If a symbol appears as a participant in a reaction, Antimony will recognize that it is a species automatically, so the use
of the keyword ‘species‘ is not required. If, however, you have a species which never appears in a reaction, you will
need to use the ‘species‘ keyword.

If you have several species that are all constant, you may declare this all in one line:

const species S1, S2, S3;

While species are variable by default, you may also declare them so explicitly with the ‘var‘ keyword:

var species S4, S5, S6;

Alternatively, you may declare a species to be a boundary species by prepending a ‘$‘ in front of it:

5.7. Language Reference 107

tellurium Documentation, Release 2.1.5

S1 + $E -> ES;

This would set the level of ‘E‘ to be constant. You can use this symbol in declaration lists as well:

species S1, $S2, $S3, S4, S5, $S6;

This declares six species, three of which are variable (by default) and three of which are constant.

Likewise, formulas are constant by default. They may be initialized with an equals sign, with either a simple or a
complex formula:

k1 = 5;
k2 = 2*S1;

You may also explicitly declare whether they are constant or variable:

const k1;
var k2;

and be more specific and declare that both are formulas:

const formula k1;
var formula k2;

Variables defined with an equals sign are assigned those values at the start of the simulation. In SBML terms, they use
the ‘Initial Assignment’ values. If the formula is to vary during the course of the simulation, use the Assignment Rule
(or Rate Rule) syntax, described later.

You can also mix-and-match your declarations however best suits what you want to convey:

species S1, S2, S3, S4;
formula k1, k2, k3, k4;
const S1, S4, k1, k3;
var S2, S3, k2, k4;

Antimony is a pure model definition language, meaning that all statements in the language serve to build a static model
of a dynamic biological system. Unlike Jarnac, sequential programming techniques such as re-using a variable for a
new purpose will not work:

pH = 7;
k1 = -log10(pH);
pH = 8.2;
k2 = -log10(pH);

In a sequential programming language, the above would result in different values being stored in k1 and k2. (This is
how Jarnac works, for those familiar with that language/simulation environment.) In a pure model definition language
like Antimony, ‘pH‘, ‘k1‘, ‘k2‘, and even the formula ‘-log10(pH)‘ are static symbols that are being defined by
Antimony statements, and not processed in any way. A simulator that requests the mathematical expression for k1 will
receive the string ‘-log10(pH)‘; the same string it will receive for k2. A request for the mathematical expression for
pH will receive the string “8.2”, since that’s the last definition found in the file. As such, k1 and k2 will end up being
identical.

As a side note, we considered having libAntimony store a warning when presented with an input file such as the
example above with a later definition overwriting an earlier definition. However, there was no way with our current
interface to let the user know that a warning had been saved, and it seemed like there could be a number of cases where
the user might legitimately want to override an earlier definition (such as when using submodules, as we’ll get to in a
bit). So for now, the above is valid Antimony input that just so happens to produce exactly the same output as:

108 Chapter 5. Antimony Reference

tellurium Documentation, Release 2.1.5

pH = 8.2;
k1 = -log10(pH);
k2 = -log10(pH);

5.7.6 Compartments

A compartment is a demarcated region of space that contains species and has a particular volume. In Antimony, you
may ignore compartments altogether, and all species are assumed to be members of a default compartment with the
imaginative name ‘default_compartment‘ with a constant volume of 1. You may define other compartments by using
the ‘compartment‘ keyword:

compartment comp1;

Compartments may also be variable or constant, and defined as such with ‘var‘ and ‘const‘:

const compartment comp1;
var compartment comp2;

The volume of a compartment may be set with an ‘=‘ in the same manner as species and reaction rates:

comp1 = 5;
comp2 = 3*comp1;

To declare that something is in a compartment, the ‘in‘ keyword is used, either during declaration:

compartment comp1 in comp2;
const species S1 in comp2;
S2 in comp2;

or during assignment for reactions:

J0 in comp1: x -> y; k1*x;
y -> z; k2*y in comp2;

or submodules:

M0 in comp2: submod();
submod2(y) in comp3;

or other variables:

S1 in comp2 = 5;

Here are Antimony’s rules for determining which compartment something is in:

• If the symbol has been declared to be in a compartment, it is in that compartment.

• If not, if the symbol is in a DNA strand (see the next section) which has been declared to be in a compartment,
it is in that compartment. If the symbol is in multiple DNA strands with conflicting compartments, it is in the
compartment of the last declared DNA strand that has a declared compartment in the model.

• If not, if the symbol is a member of a reaction with a declared compartment, it is in that compartment. If the
symbol is a member of multiple reactions with conflicting compartments, it is in the compartment of the last
declared reaction that has a declared compartment.

5.7. Language Reference 109

tellurium Documentation, Release 2.1.5

• If not, if the symbol is a member of a submodule with a declared compartment, it is in that compartment. If the
symbol is a member of multiple submodules with conflicting compartments, it is in the compartment of the last
declared submodule that has a declared compartment.

• If not, the symbol is in the compartment ‘default_compartment‘, and is treated as having no declared compart-
ment for the purposes of determining the compartments of other symbols.

Note that declaring that one compartment is ‘in‘ a second compartment does not change the compartment of the
symbols in the first compartment:

compartment c1, c2;
species s1 in c1, s2 in c1;
c1 in c2;

yields:

symbol compartment
s1 c1
s2 c1
c1 c2
c2 default_compartment

Compartments may not be circular: c1 in c2; c2 in c3; c3 in c1 is illegal.

5.7.7 Events

Events are discontinuities in model simulations that change the definitions of one or more symbols at the moment when
certain conditions apply. The condition is expressed as a boolean formula, and the definition changes are expressed as
assignments, using the keyword ‘at‘ and the following syntax:

at: variable1=formula1, variable2=formula2 [etc];

such as:

at (x>5): y=3, x=r+2;

You may also give the event a name by prepending it with a colon:

E1: at(x>=5): y=3, x=r+2;

(you may also claim an event is ‘in‘ a compartment just like everything else (‘E1 in comp1:‘). This declaration will
never change the compartment of anything else.)

In addition, there are a number of concepts in SBML events that can now be encoded in Antimony. If event assignments
are to occur after a delay, this can be encoded by using the ‘after‘ keyword:

E1: at 2 after (x>5): y=3, x=r+2;

This means to wait two time units after x transitions from less than five to more than five, then change y to 3 and x to
r+2. The delay may also itself be a formula:

E1: at 2*z/y after (x>5): y=3, x=r+2;

For delayed events (and to a certain extent with simultaneous events, discussed below), one needs to know what values
to use when performing event assignments: the values from the time the event was triggered, or the values from the
time the event assignments are being executed? By default (in Antimony, as in SBML Level 2) the first holds true:

110 Chapter 5. Antimony Reference

tellurium Documentation, Release 2.1.5

event assignments are to use values from the moment the event is triggered. To change this, the keyword ‘fromTrigger‘
is used:

E1: at 2*z/y after (x>5), fromTrigger=false: y=3, x=r+2;

You may also declare ‘fromTrigger=true‘ to explicitly declare what is the default.

New complications can arise when event assignments from multiple events are to execute at the same time: which
event assignments are to be executed first? By default, there is no defined answer to this question: as long as both
sets of assignments are executed, either may be executed first. However, if the model depends on a particular order of
execution, events may be given priorities, using the priority keyword:

E1: at ((x>5) && (z>4)), priority=1: y=3, x=r+2;
E2: at ((x>5) && (q>7)), priority=0: y=5: x=r+6;

In situations where z>4, q>7, and x>5, and then x increases, both E1 and E2 will trigger at the same time. Since
both modify the same values, it makes a difference in which order they are executed-in this case, whichever happens
last takes precedence. By giving the events priorities (higher priorities execute first) the result of this situation is
deterministic: E2 will execute last, and y will equal 5 and not 3.

Another question is whether, if at the beginning of the simulation the trigger condition is ‘true‘, it should be considered
to have just transitioned to being true or not. The default is no, meaning that no event may trigger at time 0. You may
override this default by using the ‘t0‘ keyword:

E1: at (x>5), t0=false: y=3, x=r+2;

In this situation, the value at t0 is considered to be false, meaning it can immediately transition to true if x is greater
than 5, triggering the event. You may explicitly state the default by using ‘t0 = true‘.

Finally, a different class of events is often modeled in some situations where the trigger condition must persist in being
true from the entire time between when the event is triggered to when it is executed. By default, this is not the case
for Antimony events, and, once triggered, all events will execute. To change the class of your event, use the keyword
‘persistent‘:

E1: at 3 after (x>5), persistent=true: y=3, x=r+2;

For this model, x must be greater than 5 for three seconds before executing its event assignments: if x dips below 5
during that time, the event will not fire. To explicitly declare the default situation, use ‘persistent=false‘.

The ability to change the default priority, t0, and persistent characteristics of events was introduced in SBML Level 3,
so if you translate your model to SBML Level 2, it will lose the ability to define functionality other than the default.
For more details about the interpretation of these event classifications, see the SBML Level 3 specification.

5.7.8 Assignment Rules

In some models, species and/or variables change in a manner not described by a reaction. When a variable receives a
new value at every point in the model, this can be expressed in an assignment rule, which in Antimony is formulated
with a ‘:=‘ as:

Ptot := P1 + P2 + PE;

In this example, ‘Ptot‘ will continually be updated to reflect the total amount of ‘P‘ present in the model.

Each symbol (species or formula) may have only one assignment rule associated with it. If an Antimony file defines
more than one rule, only the last will be saved.

When species are used as the target of an assignment rule, they are defined to be ‘boundary species’ and thus ‘const‘.
Antimony doesn’t have a separate syntax for boundary species whose concentrations never change vs. boundary

5.7. Language Reference 111

tellurium Documentation, Release 2.1.5

species whose concentrations change due to assignment rules (or rate rules, below). SBML distinguishes between
boundary species that may change and boundary species that may not, but in Antimony, all boundary species may
change as the result of being in an Assignment Rule or Rate Rule.

5.7.9 Signals

Signals can be generated by combining assignment rules with events.

Step Input

The simplest signal is input step. The following code implements a step that occurs at time = 20 with a magnitude of
f. A trigger is used to set a trigger variable alpha which is used to initate the step input in an assignment expression.

import tellurium as te
import roadrunner

r = te.loada("""
$Xo -> S1; k1*Xo;
S1 -> $X1; k2*S1;

k1 = 0.2; k2 = 0.45;

alpha = 0; f = 2
Xo := alpha*f
at time > 20:

alpha = 1
""")

m = r.simulate (0, 100, 300, ['time', 'Xo', 'S1'])
r.plot()

112 Chapter 5. Antimony Reference

tellurium Documentation, Release 2.1.5

Ramp

The following code starts a ramp at 20 time units by setting the p1 variable to one. This variable is used to acticate a
ramp function.

import tellurium as te
import roadrunner

r = te.loada("""
$Xo -> S1; k1*Xo;
S1 -> $X1; k2*S1;

k1 = 0.2; k2 = 0.45;

p1 = 0;
Xo := p1*(time - 20)
at time > 20:

p1 = 1
""")

m = r.simulate (0, 100, 200, ['time', 'Xo', 'S1'])
r.plot()

Ramp then Stop

The following code starts a ramp at 20 time units by setting the p1 variable to one and then stopping the ramp 20 time
units later. At 20 time units later a new term is switched on which subtract the ramp slope that results in a horizontal
line.

import tellurium as te
import roadrunner

(continues on next page)

5.7. Language Reference 113

tellurium Documentation, Release 2.1.5

(continued from previous page)

r = te.loada("""
$Xo -> S1; k1*Xo;
S1 -> $X1; k2*S1;

k1 = 0.2; k2 = 0.45;

p1 = 0; p2 = 0
Xo := p1*(time - 20) - p2*(time - 40)
at time > 20:

p1 = 1
at time > 40:

p2 = 1
""")

m = r.simulate (0, 100, 200, ['time', 'Xo', 'S1'])
r.plot()

Pulse

The following code starts a pulse at 20 time units by setting the p1 variable to one and then stops the pulse 20 time
units later by setting p2 equal to zero.

import tellurium as te
import roadrunner

r = te.loada("""
$Xo -> S1; k1*Xo;
S1 -> $X1; k2*S1;

(continues on next page)

114 Chapter 5. Antimony Reference

tellurium Documentation, Release 2.1.5

(continued from previous page)

k1 = 0.2; k2 = 0.45;

p1 = 0; p2 = 1
Xo := p1*p2
at time > 20:

p1 = 1
at time > 40:

p2 = 0
""")

m = r.simulate (0, 100, 200, ['time', 'Xo', 'S1'])
r.plot()

Sinusoidal Input

The following code starts a sinusoidal input at 20 time units by setting the p1 variable to one.

import tellurium as te
import roadrunner

r = te.loada("""
$Xo -> S1; k1*Xo;
S1 -> $X1; k2*S1;

k1 = 0.2; k2 = 0.45;

p1 = 0;
Xo := p1*(sin (time) + 1)

(continues on next page)

5.7. Language Reference 115

tellurium Documentation, Release 2.1.5

(continued from previous page)

at time > 20:
p1 = 1

""")

m = r.simulate (0, 100, 200, ['time', 'Xo', 'S1'])
r.plot()

5.7.10 Rate Rules

Rate rules define the change in a symbol’s value over time instead of defining its new value. In this sense, they are
similar to reaction rate kinetics, but without an explicit stoichiometry of change. These may be modeled in Antimony
by appending an apostrophe to the name of the symbol, and using an equals sign to define the rate:

S1' = V1*(1 - S1)/(K1 + (1 - S1)) - V2*S1/(K2 + S1)

Note that unlike initializations and assignment rules, formulas in rate rules may be self-referential, either directly or
indirectly.

Any symbol may have only one rate rule or assignment rule associated with it. Should it find more than one, only the
last will be saved.

5.7.11 Display Names

When some tools visualize models, they make a distinction between the ‘id‘ of an element, which must be unique to
the model and which must conform to certain naming conventions, and the ‘name’ of an element, which does not have
to be unique and which has much less stringent naming requirements. In Antimony, it is the id of elements which is
used everywhere. However, you may also set the ‘display name’ of an element by using the ‘is‘ keyword and putting
the name in quotes:

116 Chapter 5. Antimony Reference

tellurium Documentation, Release 2.1.5

A.k1 is "reaction rate k1";
S34 is "Ethyl Alcohol";

5.7.12 Comments

Comments in Antimony can be made on one line with //[comments], or on multiple lines with /* [comments]

*/. You may also use python-style comments with #[comments].

/* The following initializations were
taken from the literature */

X=3; //Taken from Galdziki, et al.
Y=4; //Taken from Rutherford, et al.
Z=5; # A python comment.

Comments are not translated to SBML or CellML, and will be lost if round-tripped through those languages.

5.7.13 Units

While units do not affect the mathematics of SBML or Antimony models, you can define them in Antimony for
annotation purposes by using the unit keyword:

unit substance = 1e-6 mole;
unit hour = 3600 seconds;

Adding an ‘s’ to the end of a unit name to make it plural is fine when defining a unit: 3600 second is the same
as 3600 seconds. Compound units may be created by using formulas with *, /, and ^. However, you must use
base units when doing so (‘base units’ defined as those listed in Table 2 of the SBML Level 3 Version 1 specification,
which mostly are SI and SI-derived units).

unit micromole = 10e-6 mole / liter;
unit daily_feeding = 1 item / 86400 seconds
unit voltage = 1000 grams * meters^2 / seconds^-3 * ampere^-1

You may use units when defining formulas using the same syntax as above: any number may be given a unit by
writing the name of the unit after the number. When defining a symbol (of any numerical type: species, parameter,
compartment, etc.), you can either use the same technique to give it an initial value and a unit, or you may just define
its units by using the ‘has’ keyword:

unit foo = 100 mole/5 liter;
x = 40 foo/3 seconds; # '40' now has units of 'foo' and '3' units of 'seconds'.
y = 3.3 foo; # 'y' is given units of 'foo' and an initial

value of '3.3'.
z has foo; # 'z' is given units of 'foo'.

Antimony does not calculate any derived units: in the above example, ‘x’ is fully defined in terms of moles per liter
per second, but it is not annotated as such.

As with many things in Antimony, you may use a unit before defining it: ‘x = 10 ml‘ will create a parameter x and a
unit ‘ml‘.

5.7. Language Reference 117

http://sbml.org/Documents/Specifications#SBML_Level_3_Version_1_Core

tellurium Documentation, Release 2.1.5

5.7.14 DNA Strands

A new concept in Antimony that has not been modeled explicitly in previous model definition languages such as SBML
is the idea of having DNA strands where downstream elements can inherit reaction rates from upstream elements. DNA
strands are declared by connecting symbols with --:

--P1--G1--stop--P2--G2--

You can also give the strand a name:

dna1: --P1--G1--

By default, the reaction rate or formula associated with an element of a DNA strand is equal to the reaction rate or
formula of the element upstream of it in the strand. Thus, if P1 is a promoter and G1 is a gene, in the model:

dna1: --P1--G1--
P1 = S1*k;
G1: -> prot1;

the reaction rate of G1 will be S1*k.

It is also possible to modulate the inherited reaction rate. To do this, we use ellipses ... as shorthand for ‘the formula
for the element upstream of me’. Let’s add a ribosome binding site that increases the rate of production of protein by
a factor of three, and say that the promoter actually increases the rate of protein production by S1*k instead of setting
it to S1*k:

dna1: --P1--RBS1--G1--
P1 = S1*k + ...;
RBS1 = ...*3;
G1: -> prot1;

Since in this model, nothing is upstream of P1, the upstream rate is set to zero, so the final reaction rate of G1 is equal
to (S1*k + 0)*3.

Valid elements of DNA strands include formulas (operators), reactions (genes), and other DNA strands. Let’s wrap
our model so far in a submodule, and then use the strand in a new strand:

model strand1()
dna1: --P1--RBS1--G1--
P1 = S1*k + ...;
RBS1 = ...*3;
G1: -> prot1;

end

model fullstrand()
A: strand1();
fulldna: P2--A.dna1
P2 = S2*k2;

end

In the model fullstrand, the reaction that produces A.prot1 is equal to (A.S1*A.k+(S2*k2))*3.

Operators and genes may be duplicated and appear in multiple strands:

dna1: --P1--RBS1--G1--
dna2: P2--dna1
dna3: P2--RBS2--G1

118 Chapter 5. Antimony Reference

tellurium Documentation, Release 2.1.5

Strands, however, count as unique constructs, and may only appear as singletons or within a single other strand (and
may not, of course, exist in a loop, being contained in a strand that it itself contains).

If the reaction rate or formula for any duplicated symbol is left at the default or if it contains ellipses explicitly (‘. . . ’),
it will be equal to the sum of all reaction rates in all the strands in which it appears. If we further define our above
model:

dna1: --P1--RBS1--G1--
dna2: P2--dna1
dna3: P2--RBS2--G1
P1 = ...+0.3;
P2 = ...+1.2;
RBS1 = ...*0.8;
RBS2 = ...*1.1;
G1: -> prot1;

The reaction rate for the production of ‘prot1‘ will be equal to (((0+1.2)+0.3)*0.8) + (((0+1.2)*1.1)).
If you set the reaction rate of G1 without using an ellipsis, but include it in multiple strands, its reaction rate will be a
multiple of the number of strands it is a part of. For example, if you set the reaction rate of G1 above to “k1*S1”, and
include it in two strands, the net reaction rate will be k1*S1 + k1*S1.

The purpose of prepending or postfixing a ‘–‘ to a strand is to declare that the strand in question is designed to
have DNA attached to it at that end. If exactly one DNA strand is defined with an upstream ‘–‘ in its definition in
a submodule, the name of that module may be used as a proxy for that strand when creating attaching something
upstream of it, and visa versa with a defined downstream ‘–‘ in its definition:

model twostrands
--P1--RBS1--G1
P2--RBS2--G2--

end

model long
A: twostrands();
P3--A
A--G3

end

The module ‘long‘ will have two strands: P3-A.P1-A.RBS1-A.G1 and A.P2-A.RBS2-A.G2-G3.

Submodule strands intended to be used in the middle of other strands should be defined with ‘–‘ both upstream and
downstream of the strand in question:

model oneexported
--P1--RBS1--G1--
P2--RBS2--G2

end

model full
A: oneexported()
P2--A--stop

end

If multiple strands are defined with upstream or downstream “–” marks, it is illegal to use the name of the module
containing them as proxy.

5.7. Language Reference 119

tellurium Documentation, Release 2.1.5

5.7.15 Interactions

Some species act as activators or repressors of reactions that they do not actively participate in. Typical models do not
bother mentioning this explicitly, as it will show up in the reaction rates. However, for visualization purposes and/or
for cases where the reaction rates might not be known explicitly, you may declare these interactions using the same
format as reactions, using different symbols instead of ->: for activations, use -o; for inhibitions, use -|, and for
unknown interactions or for interactions which sometimes activate and sometimes inhibit, use -(:

J0: S1 + E -> SE;
i1: S2 -| J0;
i2: S3 -o J0;
i3: S4 -(J0;

If a reaction rate is given for the reaction in question, that reaction must include the species listed as interacting with
that reaction. This, then, is legal:

J0: S1 + E -> SE; k1*S1*E/S2
i1: S2 -| J0;

because the species S2 is present in the formula k1*S1*E/S2. If the concentration of an inhibitory species increases,
it should decrease the reaction rate of the reaction it inhibits, and vice versa for activating species. The current version
of libAntimony (v2.4) does not check this, but future versions may add the check.

When the reaction rate is not known, species from interactions will be added to the SBML ‘listOfModifiers’ for the
reaction in question. Normally, the kinetic law is parsed by libAntimony and any species there are added to the list of
modifiers automatically, but if there is no kinetic law to parse, this is how to add species to that list.

5.7.16 Function Definitions

You may create user-defined functions in a similar fashion to the way you create modules, and then use these func-
tions in Antimony equations. These functions must be basic single equations, and act in a similar manner to macro
expansions. As an example, you might define the quadratic equation and use it in a later equation as follows:

function quadratic(x, a, b, c)
a*x^2 + b*x + c

end

model quad1
S3 = quadratic(s1, k1, k2, k3);

end

This effectively defines S3 to have the equation k1*s1^2 + k2*s1 + k3.

In addition, there are several built-in functions defined in Antimony. All of the functions present in the MathML subset
used in SBML Level 3 are likewise defined here, and include:

abs, and, arccos, arccosh, arccot, arccoth, arccsc, arccsch, arcsec, arcsech, arcsin,
arcsinh, arctan, arctanh, ceiling, cos, cosh, cot, coth, csc, csch, divide, eq, exp,
factorial, floor, geq, gt, leq, ln, log, lt, minus, neq, not, or, piecewise, plus,
power, root, sec, sech, sin, sinh, tan, tanh, times, and xor.

In addition, the constants

true, false, notanumber, pi, avogadro, infinity, and exponentiale

are all allowed.

120 Chapter 5. Antimony Reference

tellurium Documentation, Release 2.1.5

As of Antimony v2.12, the following distributions are also allowed, and will be added to the translated SBML file if
used:

normal(mean, stddev),
normal(mean, stddev, min, max),
uniform(min, max),
bernoulli(prob),
binomial(nTrials, probabilityOfSuccess),
binomial(nTrials, probabilityOfSuccess, min, max),
cauchy(location, scale),
cauchy(location, scale, min, max),
chisquare(degreesOfFreedom),
chisquare(degreesOfFreedom, min, max),
exponential(rate),
exponential(rate, min, max),
gamma(shape, scale),
gamma(shape, scale, min, max),
laplace(location, scale),
laplace(location, scale, min, max),
lognormal(mean, stdev),
lognormal(mean, stdev, min, max),
poisson(rate),
poisson(rate, min, max),
rayleigh(scale), and
rayleigh(scale, min, max).

The ‘truncated’ forms of all functions allow one to define inclusive boundaries, meaning that the returned value must
fall between the min and the max values given.

5.7.17 Uncertainty information

The SBML ‘Distributions’ package introduced a variety of ways to store information about the uncertainty of model
elements. Antimony is now extended to also store this same information, through the following syntax:

A.mean = x
A.stdev = x (or A.standardDeviation = x)
A.coefficientOfVariation = x
A.kurtosis = x
A.median = x
A.mode = x
A.sampleSize = x
A.skewness = x
A.standardError = x
A.variance = x
A.confidenceInterval = {x, y}
A.credibleInterval = {x, y}
A.interquartileRange = {x,y}
A.range = {x,y}
A.distribution = function()
A.distribution is "http://uri"

A.externalParameter = x || {x,y} || function()
A.externalParameter is "http://uri"

Where A may be any symbol in Antimony with mathematical meaning; x and y may both be either a symbol or a
value (i.e. A.mean=2.4; A.confidenceInterval={S1, 8.2}); function() may be any mathematical
formula; and "http://uri" is a URI that defines the given distribution or externalParameter.

5.7. Language Reference 121

tellurium Documentation, Release 2.1.5

5.7.18 SBO and cvterms

Antimony model elements may also be annotated with their SBO terms and cvterms, using the following syntax:

A.sboTerm = 236 or A.sboTerm = SBO:00000236
A identity "cvterm" or A biological_entity_is "cvterm"
A hasPart "cvterm" or A part "cvterm"
A isPartOf "cvterm" or A parthood "cvterm"
A isVersionOf "cvterm" or A hypernym "cvterm"
A hasVersion "cvterm" or A version "cvterm"
A isHomologTo "cvterm" or A homolog "cvterm"
A isDescribedBy "cvterm" or A description "cvterm"
A isEncodedBy "cvterm" or A encoder "cvterm"
A encodes "cvterm" or A encodement "cvterm"
A occursIn "cvterm" or A container "cvterm"
A hasProperty "cvterm" or A property "cvterm"
A isPropertyOf "cvterm" or A propertyBearer "cvterm"
A hasTaxon "cvterm" or A taxon "cvterm"

Where A is any model element, model name, or function name, and cvterm is a URI like "http://
identifiers.org/uniprot/P12999".

5.7.19 Flux Balance Constraints

In some models, reaction rates are not known specifically, but one can place certain constraints on those reactions, and
then apply an objective function (such as ‘maximize growth’) to try to discern a likely set of reaction rates. In SBML,
the package that lets you define these constraints and objective functions is known as the ‘Flux Balance Constraints’
package. As of v2.8.0 of Antimony, these constraints can now be defined in Antimony as well, using equalities and
inequalities <, >, <=, >=, and ==. If we assume that all J variables are reactions, the following definitions are all Flux
Balance constraints:

0 <= J0
J1 <= 1000
-10 <= J2 <= 10

Constraints that do not involve the ID of a reaction by itself will be translated as core SBML constraints. (Flux Balance
constraints are also translated as core constraints, for consistency.)

The objective function is defined using either the keyword maximize or minimize. It may be named by prepending
the statement with that name, followed by a colon:

maximize J1
obj1: minimize J2

5.7.20 Other files

More than one file may be used to define a set of modules in Antimony through the use of the 'import' keyword. At
any point in the file outside of a module definition, use the word import followed by the name of the file in quotation
marks, and Antimony will include the modules defined in that file as if they had been cut and pasted into your file at
that point. SBML files may also be included in this way:

import "models1.txt"
import "oscli.xml"

(continues on next page)

122 Chapter 5. Antimony Reference

tellurium Documentation, Release 2.1.5

(continued from previous page)

model mod2()
A: mod1();
B: oscli();

end

In this example, the file ‘models1.txt‘ is an Antimony file that defines the module ‘mod1‘, and the file ‘oscli.xml‘ is
an SBML file that defines a model named ‘oscli‘. The Antimony module ‘mod2‘ may then use modules from either or
both of the other imported files.

Remember that imported files act like they were cut and pasted into the main file. As such, any bare declarations in
the main file and in the imported files will all contribute to the default ‘__main‘ module. Most SBML files will not
contribute to this module, unless the name of the model in the file is __main (for example, if it was created by the
antimony converter).

By default, libantimony will examine the ‘import‘ text to determine whether it is a relative or absolute filename, and,
if relative, will prepend the directory of the working file to the import text before attempting to load the file. If it
cannot find it there, it is possible to tell the libantimony API to look in different directories for files loaded from import
statements.

However, if the working directory contains a .antimony file, or if one of the named directories contains a .
antimony file, import statements can be subverted. Each line of this file must contain three tab-delimited strings:
the name of the file which contains an import statement, the text of the import statement, and the filename where
the program should look for the file. Thus, if a file file1.txt contains the line import "file2.txt", and a
.antimony file is discovered with the line:

file1.txt file2.txt antimony/import/file2.txt

The library will attempt to load ‘antimony/import/file2.txt‘ instead of looking for ‘file2.txt‘ directly. For creating files
in-memory or when reading antimony models from strings, the first string may be left out:

file2.txt antimony/import/file2.txt

The first and third entries may be relative filenames: the directory of the .antimony file itself will be added internally
when determining the file’s actual location. The second entry must be exactly as it appears in the first file’s ‘import‘
directive, between the quotation marks.

5.7.21 Importing and Exporting Antimony Models

Once you have created an Antimony file, you can convert it to SBML or CellML using ‘sbtranslate’ or the ‘QTAnti-
mony’ visual editor (both available from http://antimony.sourceforge.net/) This will convert each of the models defined
in the Antimony text file into a separate SBML model, including the overall ‘__main‘ module (if it contains anything).
These files can then be used for simulation or visualization in other programs.

QTAntimony can be used to edit and translate Antimony, SBML, and CellML models. Any file in those three formats
can be opened, and from the ‘View’ menu, you can turn on or off the SBML and CellML tabs. Select the tabs to
translate and view the working model in those different formats.

The SBML tabs can additionally be configured to use the ‘Hierarchical Model Composition’ package constructs.
Select ‘Edit/Flatten SBML tab(s)’ or hit control-F to toggle between this version and the old ‘flattened’ version of
SBML. (To enable this feature if you compile Antimony yourself, you will need the latest versions of libSBML with
the SBML ‘comp’ package enabled, and to select ‘WITH_COMP_SBML’ from the CMake menu.)

As there were now several different file formats available for translation, the old command-line translators still exist
(antimony2sbml; sbml2antimony), but have been supplanted by the new ‘sbtranslate’ executable. Instructions for use
are available by running sbtranslate from the command line, but in brief: any number of files to translate may be

5.7. Language Reference 123

http://antimony.sourceforge.net/

tellurium Documentation, Release 2.1.5

added to the command line, and the desired output format is given with the ‘-o‘ flag: -o antimony, -o sbml, -o
cellml, or -o sbml-comp (the last to output files with the SBML ‘comp‘ package constructs).

Examples:

sbtranslate model1.txt model2.txt -o sbml

will create one flattened SBML file for the main model in the two Antimony files in the working directory. Each file
will be of the format “[prefix].xml”, where [prefix] is the original filename with ‘.txt‘ removed (if present).

sbtranslate oscli.xml ffn.xml -o antimony

will output two files in the working directory: ‘oscli.txt‘ and ‘ffn.txt‘ (in the antimony format).

sbtranslate model1.txt -o sbml-comp

will output ‘model1.xml‘ in the working directory, containing all models in the ‘model1.txt‘ file, using the SBML
‘comp‘ package.

5.7.22 Appendix: Converting between SBML and Antimony

For reference, here are some of the differences you will see when converting models between SBML and Antimony:

• Local parameters in SBML reactions become global parameters in Antimony, with the reaction name prepended.
If a different symbol already has the new name, a number is appended to the variable name so it will be unique.
These do not get converted back to local parameters when converting Antimony back to SBML.

• Algebraic rules in SBML disappear in Antimony.

• Any element with both a value (or an initial amount/concentration for species) and an initial assignment in
SBML will have only the initial assignment in Antimony.

• Stoichiometry math in SBML disappears in Antimony.

• All constant=true species in SBML are set const in Antimony, even if that same species is set
boundary=false.

• All boundary=true species in SBML are set const in Antimony, even if that same species is set
constant=false.

• Boundary (‘const’) species in Antimony are set boundary=true and constant=false in SBML.

• Variable (‘var’) species in Antimony are set boundary=false and constant=false in SBML.

• Modules in Antimony are flattened in SBML (unless you use the comp option).

• DNA strands in Antimony disappear in SBML.

• DNA elements in Antimony no longer retain the ellipses syntax in SBML, but the effective reaction rates and
assignment rules should be accurate, even for elements appearing in multiple DNA strands. These reaction rates
and assignment rules will be the sum of the rate at all duplicate elements within the DNA strands.

• Any symbol with the MathML csymbol ‘time‘ in SBML becomes ‘time‘ in Antimony.

• Any formula with the symbol ‘time‘ in it in Antimony will become the MathML csymbol ‘time‘ in in SBML.

• The MathML csymbol ‘delay‘ in SBML disappears in Antimony.

• Any SBML version 2 level 1 function with the MathML csymbol ‘time‘ in it will become a local variable with
the name ‘time_ref‘ in Antimony. This ‘time_ref‘ is added to the function’s interface (as the last in the list of

124 Chapter 5. Antimony Reference

tellurium Documentation, Release 2.1.5

symbols), and any uses of the function are modified to use ‘time‘ in the call. In other words, a function “func-
tion(x, y): x+y*time” becomes “function(x, y, time_ref): x + y*time_ref”, and formulas that use “function(A,
B)” become “function(A, B, time)”

• A variety of Antimony keywords, if found in SBML models as IDs, are renamed to add an appended ‘_‘. So the
ID compartment becomes compartment_, model becomes model_, etc.

5.7.23 Further Reading

• Lucian Smith’s example models show how to use the comp package.

• Antimony’s manual in PDF format.

5.7. Language Reference 125

http://antimony.sourceforge.net/antimony-examples.html
http://sbml.org/Documents/Specifications/SBML_Level_3/Packages/comp
http://antimony.sourceforge.net/Tutorial.pdf

tellurium Documentation, Release 2.1.5

126 Chapter 5. Antimony Reference

CHAPTER 6

Parameter Scan

ParameterScan is a package for Tellurium that provides a different way to run simulations and plot graphs than given
in the standard Tellurium library. While the standard syntax in Tellurium asks you to put parameters, such as the
amount of time for the simulation to run, as arguments in the simulation function, ParameterScan allows you to set
these values before calling the function. This is especially useful for more complicated 3D plots that often take many
arguments to customize. Therefore, ParameterScan also provides several plotting options that would be cumbersome
to handle using the traditional approach. This tutorial will go over how to use all of ParameterScan’s functionality.

6.1 Loading a Model

To use ParameterScan you will need to import it. The easiest way to do this is the command ‘from tellurium import
ParameterScan’ after the standard ‘import tellurium as te’.

import tellurium as te
from tellurium import ParameterScan

cell = '''
$Xo -> S1; vo;
S1 -> S2; k1*S1 - k2*S2;
S2 -> $X1; k3*S2;

vo = 1
k1 = 2; k2 = 0; k3 = 3;

'''

rr = te.loadAntimonyModel(cell)
p = ParameterScan(rr)

p.startTime = 0
p.endTime = 20
p.numberOfPoints = 50
p.width = 2
p.xlabel = 'Time'

(continues on next page)

127

tellurium Documentation, Release 2.1.5

(continued from previous page)

p.ylabel = 'Concentration'
p.title = 'Cell'

p.plotArray()

After you load the model, you can use it to create an object of ParameterScan. This allows you to set many different
parameters and easily change them.

6.2 Class Methods

These are the methods of the ParameterScan class.

plotArray()

The plotArray() method works much the same as te.plotArray(), but with some increased functionality. It automatically
runs a simulation based on the given parameters, and plots a graph of the results. Accepted parameters are startTime,
endTime, numberOfPoints, width, color, xlabel, ylabel, title, integrator, and selection.

plotGraduatedArray()

This method runs several simulations, each one with a slightly higher starting concentration of a chosen species
than the last. It then plots the results. Accepted parameters are startTime, endTime, value, startValue, endValue,
numberOfPoints, width, color, xlabel, ylabel, title, integrator, and polyNumber.

plotPolyArray()

This method runs the same simulation as plotGraduatedArray(), but plots each graph as a polygon in 3D space. Ac-
cepted parameters are startTime, endTime, value, startValue, endValue, numberOfPoints, color, alpha, xlabel, ylabel,
title, integrator, and polyNumber.

plotMultiArray(param1, param1Range, param2, param2Range)

This method plots a grid of arrays with different starting conditions. It is the only method in ParameterScan that takes
arguments when it is called. The two param arguments specify the species or constant that should be set, and the range
arguments give the different values that should be simulated with. The resulting grid is an array for each possible
combination of the two ranges. For instance, plotMultiArray(‘k1’, [1, 2], ‘k2’, [1, 2, 3]) would result in a grid of six
arrays, one with k1 = 1 and k2 = 1, the next with k1 = 1 and k2 = 2, and so on. The advantage of this method is that
you can plot multiple species in each array. Accepted parameters are startTime, endTime, numberOfPoints, width,
title, and integrator.

plotSurface()

This method produces a color-coded 3D surface based on the concentration of one species and the variation of two
factors (usually time and an equilibrium constant). Accepted parameters are startTime, endTime, numberOfPoints,
startValue, endValue, independent, dependent, color, xlabel, ylabel, title, integrator, colormap, colorbar, and antialias.

plot2DParameterScan(p1, p1Range, p2, p2Range)

Create a 2D parameter scan and plots the results. The two parameters p1, p2 are the id of the first and second parameter.
p1Range and p2Range are the range of the first and second parameter respectively. Parameters start and end represents
the starting time and ending time, and points is the number of points to simulate. Will generate a 2D plot containing
multiple graphs of the given parameters at various values in the given ranges.

createColormap(color1, color2)

This method allows you to create a custom colormap for plotSurface(). It returns a colormap that stretches between
color1 and color2. Colors can be input as RGB tuplet lists (i.e. [0.5, 0, 1]), or as strings with either a standard color

128 Chapter 6. Parameter Scan

tellurium Documentation, Release 2.1.5

name or a hex value. The first color becomes bottom of the colormap (i.e. lowest values in plotArray()) and the second
becomes the top.

createColorPoints()

This method creates a color list (i.e. sets ‘color’) spanning the range of a colormap. The colormap can either be
predefined or user-defined with createColorMap(). This set of colors will then be applied to arrays, including plotAr-
ray(), plotPolyArray(), and plotGraduatedArray(). Note: This method gets the number of colors to generate from the
polyNumber parameter. If using it with plotArray() or plotGraduatedArray(), setting this parameter to the number of
graphs you are expecting will obtain better results.

6.3 Example

Let’s say that we want to examine how the value of a rate constant (parameter) affects how the concentration of a
species changes over time. There are several ways this can be done, but the simplest is to use plotGraduatedArray.
Here is an example script:

import tellurium as te
from tellurium import ParameterScan

r = te.loada('''
$Xo -> S1; vo;
S1 -> S2; k1*S1 - k2*S2;
S2 -> $X1; k3*S2;

vo = 1
k1 = 2; k2 = 0; k3 = 3;

''')

p = ParameterScan(r)

p.endTime = 6
p.numberOfPoints = 100
p.polyNumber = 5
p.startValue = 1
p.endValue = 5
p.value = 'k1'
p.selection = ['S1']

p.plotGraduatedArray()

Another way is to use createColormap() and plotSurface() to create a 3D graph of the same model as above. After
loading the model, we can use this code:

p.endTime = 6
p.colormap = p.createColormap([.12,.56,1], [.86,.08,.23])
p.dependent = 'S1'
p.independent = ['time', 'k1']
p.startValue = 1
p.endValue = 5
p.numberOfPoints = 100

p.plotSurface()

6.3. Example 129

tellurium Documentation, Release 2.1.5

6.3.1 Perform Parameter Scan

plotPolyArray() example

import tellurium as te

r = te.loada('''
J1: $Xo -> x; 0.1 + k1*x^4/(k2+x^4);
x -> $w; k3*x;

k1 = 0.9;
k2 = 0.3;
k3 = 0.7;
x = 0;

''')

parameter scan
p = te.ParameterScan(r,

settings
startTime = 0,
endTime = 15,
numberOfPoints = 50,
polyNumber = 10,
endValue = 1.8,
alpha = 0.8,
value = "x",
selection = "x",
color = ['#0F0F3D', '#141452', '#1A1A66', '#1F1F7A', '#24248F', '#2929A3',

'#2E2EB8', '#3333CC', '#4747D1', '#5C5CD6']
)
plot
p.plotPolyArray()

plotSurface() example

130 Chapter 6. Parameter Scan

tellurium Documentation, Release 2.1.5

r = te.loada('''
$Xo -> S1; vo;
S1 -> S2; k1*S1 - k2*S2;
S2 -> $X1; k3*S2;

vo = 1
k1 = 2; k2 = 0; k3 = 3;

''')

parameter scan
p = te.ParameterScan(r,

settings
startTime = 0,
endTime = 6,
numberOfPoints = 50,
startValue = 1,
endValue = 5,
colormap = "cool",
independent = ["Time", "k1"],
dependent = "S1",
xlabel = "Time",
ylabel = "x",
title = "Model"

)
plot
p.plotSurface()

import warnings
warnings.filterwarnings("ignore")

import tellurium as te
from tellurium.analysis.parameterscan import plot2DParameterScan

model definitions
r = te.loada("""

(continues on next page)

6.3. Example 131

tellurium Documentation, Release 2.1.5

(continued from previous page)

model test
J0: S1 -> S2; Vmax * (S1/(Km+S1))
S1 = 10; S2 = 0;
Vmax = 1; Km = 0.5;

end
""")
s = r.simulate(0, 20, 41)
r.plot(s)

import numpy as np
plot2DParameterScan(r,

p1='Vmax', p1Range=np.linspace(1, 10, num=5),
p2='Vmax', p2Range=np.linspace(0.1, 1.0, num=5),
start=0, end=50, points=101)

132 Chapter 6. Parameter Scan

tellurium Documentation, Release 2.1.5

6.4 Properties

These are the properties of the ParameterScan class.

alpha: Sets opaqueness of polygons in plotPolyArray(). Should be a number from 0-1. Set to 0.7 by default.

color: Sets color for use in all plotting functions except plotSurface() and plotMultiArray(). Should be a list of at
least one string. All legal HTML color names are accepted. Additionally, for plotArray() and plotGraduatedArray(),
this parameter can determine the appearance of the line as according to PyPlot definitions. For example, setting color
to [‘ro’] would produce a graph of red circles. For examples on types of lines in PyPlot, go to http://matplotlib.org/
api/pyplot_api.html#matplotlib.pyplot.plot. If there are more graphs than provided color selections, subsequent graphs
will start back from the beginning of the list.

colorbar: True shows a color legend for plotSurface(), False does not. Set to True by default.

colormap: The name of the colormap you want to use for plotSurface(). Legal names can be found at http://
matplotlib.org/examples/color/colormaps_reference.html and should be strings. Alternatively, you can create a custom
colormap using the createColorMap method.

dependent: The dependent variable for plotSurface(). Should be a string of a valid species.

endTime: When the simulation ends. Default is 20.

endValue: For plotGraduatedArray(), assigns the final value of the independent variable other than time. For
plotPolyArray() and plotSurface() assigns the final value of the parameter being varied. Should be a string of a valid
parameter.

independent: The independent variable for plotSurface(). Should be a list of two strings: one for time, and one for
a parameter.

integrator: The integrator used to calculate results for all plotting methods. Set to ‘cvode’ by default, but another
option is ‘gillespie.’

6.4. Properties 133

http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.plot
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.plot
http://matplotlib.org/examples/color/colormaps_reference.html
http://matplotlib.org/examples/color/colormaps_reference.html

tellurium Documentation, Release 2.1.5

legend: A bool that determines whether a legend is displayed for plotArray(), plotGraduatedArray(), and plotMul-
tiArray(). Default is True.

numberOfPoints: Number of points in simulation results. Default is 50. Should be an integer.

polyNumber: The number of graphs for plotGraduatedArray() and plotPolyArray(). Default is 10.

rr: A pointer to a loaded RoadRunner model. ParameterScan() takes it as its only argument.

selection: The species to be shown in the graph in plotArray() and plotMultiArray(). Should be a list of at least
one string.

sameColor: Set this to True to force plotGraduatedArray() to be all in one color. Default color is blue, but another
color can be chosen via the “color” parameter. Set to False by default.

startTime: When the simulation begins. Default is 0.

startValue: For plotGraduatedArray(), assigns the beginning value of the independent variable other than time.
For plotPolyArray() and plotSurface() assigns the beginning value of the parameter being varied. Default is whatever
the value is in the loaded model, or if not specified there, 0.

title: Default is no title. If set to a string, it will display above any of the plotting methods.

value: The item to be varied between graphs in plotGraduatedArray() and plotPolyArray(). Should be a string of a
valid species or parameter.

width: Sets line width in plotArray(), plotGraduatedArray(), and plotMultiArray(). Won’t have any effect on special
line types (see color). Default is 2.5.

xlabel: Sets a title for the x-axis. Should be a string. Not setting it results in an appropriate default; to create a
graph with no title for the x-axis, set it to None.

ylabel: Sets a title for the y-axis. Should be a string. Not setting it results in an appropriate default; to create a
graph with no title for the x-axis, set it to None.

zlabel: Sets a title for the z-axis. Should be a string. Not setting it results in an appropriate default; to create a graph
with no title for the x-axis, set it to None.

6.5 SteadyStateScan

This class is part of ParameterScan but provides some added functionality. It allows the user to plot graphs of the
steady state values of one or more species as dependent on the changing value of an equilibrium constant on the x-
axis. To use it, use the same import statement as before: ‘from tellurium import SteadyStateScan. Then, you can
use SteadyStateScan on a loaded model by using ‘ss = SteadyStateScan(rr)’. Right now, the only working method is
plotArray(), which needs the parameters of value, startValue, endValue, numberOfPoints, and selection. The parameter
‘value’ refers to the equilibrium constant, and should be the string of the chosen constant. The start and end value
parameters are numbers that determine the domain of the x-axis. The ‘numberOfPoints’ parameter refers to the number
of data points (i.e. a larger value gives a smoother graph) and ‘selection’ is a list of strings of one or more species that
you would like in the graph.

6.5.1 Steady state scan

Using te.ParameterScan.SteadyStateScan for scanning the steady state.

import tellurium as te
import matplotlib.pyplot as plt
import tellurium as te
import numpy as np

(continues on next page)

134 Chapter 6. Parameter Scan

tellurium Documentation, Release 2.1.5

(continued from previous page)

from roadrunner import Config

r = te.loada('''
$Xo -> S1; vo;
S1 -> S2; k1*S1 - k2*S2;
S2 -> $X1; k3*S2;

vo = 1
k1 = 2; k2 = 0; k3 = 3;

''')

p = te.SteadyStateScan(r,
value = 'k3',
startValue = 2,
endValue = 3,
numberOfPoints = 20,
selection = ['S1', 'S2']

)
p.plotArray()

array([[2.05263158, 0.5 , 0.48717949],
[2.10526316, 0.5 , 0.475],
[2.15789474, 0.5 , 0.46341463],
[2.21052632, 0.5 , 0.45238095],
[2.26315789, 0.5 , 0.44186047],
[2.31578947, 0.5 , 0.43181818],
[2.36842105, 0.5 , 0.42222222],
[2.42105263, 0.5 , 0.41304348],
[2.47368421, 0.5 , 0.40425532],
[2.52631579, 0.5 , 0.39583333],
[2.57894737, 0.5 , 0.3877551],
[2.63157895, 0.5 , 0.38],
[2.68421053, 0.5 , 0.37254902],

(continues on next page)

6.5. SteadyStateScan 135

tellurium Documentation, Release 2.1.5

(continued from previous page)

[2.73684211, 0.5 , 0.36538462],
[2.78947368, 0.5 , 0.35849057],
[2.84210526, 0.5 , 0.35185185],
[2.89473684, 0.5 , 0.34545455],
[2.94736842, 0.5 , 0.33928571],
[3. , 0.5 , 0.33333333],
[3.05263158, 0.5 , 0.32758621]])

136 Chapter 6. Parameter Scan

CHAPTER 7

Tellurium Methods

7.1 Installing Packages

Tellurium provides utility methods for installing Python packages from PyPI. These methods simply delegate to pip,
and are usually more reliable than running !pip install xyz.

tellurium.installPackage(name)
Install pip package. This has the advantage you don’t have to manually track down the currently running Python
interpreter and switch to the command line (useful e.g. in the Tellurium notebook viewer).

Parameters name (str) – package name

tellurium.upgradePackage(name)
Upgrade pip package.

Parameters name (str) – package name

tellurium.uninstallPackage(name)
Uninstall pip package.

Parameters name (str) – package name

tellurium.searchPackage(name)
Search pip package for package name.

Parameters name (str) – package name

7.1.1 How to install additional packages

If you are using Tellurium notebook or Tellurium Spyder, you can install additional package using
installPackage function. In Tellurium Spyder, you can also install packages using included command Prompt.
For more information, see Running Command Prompt for Tellurium Spyder.

137

https://pypi.python.org/pypi
https://tellurium.readthedocs.io/en/latest/walkthrough.html#running-command-prompt-for-tellurium-spyder

tellurium Documentation, Release 2.1.5

import tellurium as te
install cobra (https://github.com/opencobra/cobrapy)
te.installPackage('cobra')
update cobra to latest version
te.upgradePackage('cobra')
remove cobra
te.removePackage('cobra')

7.2 Utility Methods

The most useful methods here are the notices routines. Roadrunner will offen issue warning or informational messages.
For repeated simulation such messages will clutter up the outputs. noticesOff and noticesOn can be used to turn on an
off the messages.

tellurium.getVersionInfo()
Returns version information for tellurium included packages.

Returns list of tuples (package, version)

tellurium.printVersionInfo()
Prints version information for tellurium included packages.

see also: getVersionInfo()

tellurium.getTelluriumVersion()
Version number of tellurium.

Returns version

Return type str

tellurium.noticesOff()
Switch off the generation of notices to the user. Call this to stop roadrunner from printing warning message to
the console.

See also noticesOn()

tellurium.noticesOn()
Switch on notice generation to the user.

See also noticesOff()

tellurium.saveToFile(filePath, str)
Save string to file.

see also: readFromFile()

Parameters

• filePath – file path to save to

• str – string to save

tellurium.readFromFile(filePath)
Load a file and return contents as a string.

see also: saveToFile()

Parameters filePath – file path to read from

Returns string representation of the contents of the file

138 Chapter 7. Tellurium Methods

tellurium Documentation, Release 2.1.5

Tellurium’s version can be obtained via te.__version__. .printVersionInfo() also returns information
from certain constituent packages.

import tellurium as te

to get the tellurium version use
print('te.__version__')
print(te.__version__)
or
print('te.getTelluriumVersion()')
print(te.getTelluriumVersion())

to print the full version info use
print('-' * 80)
te.printVersionInfo()
print('-' * 80)

te.__version__
2.1.0
te.getTelluriumVersion()
2.1.0
--
tellurium : 2.1.0
roadrunner : 1.5.1
antimony : 2.9.4
libsbml : 5.15.0
libsedml : 0.4.3
phrasedml : 1.0.9
--

from builtins import range
Load SBML file
r = te.loada("""
model test

J0: X0 -> X1; k1*X0;
X0 = 10; X1=0;
k1 = 0.2

end
""")

import matplotlib.pyplot as plt

Turn off notices so they don't clutter the output
te.noticesOff()
for i in range(0, 20):

result = r.simulate (0, 10)
r.reset()
r.plot(result, loc=None, show=False,

linewidth=2.0, linestyle='-', color='black', alpha=0.8)
r.k1 = r.k1 + 0.2

Turn the notices back on
te.noticesOn()

create tmp file
import tempfile
ftmp = tempfile.NamedTemporaryFile(suffix=".xml")
load model

(continues on next page)

7.2. Utility Methods 139

tellurium Documentation, Release 2.1.5

(continued from previous page)

r = te.loada('S1 -> S2; k1*S1; k1 = 0.1; S1 = 10')
save to file
te.saveToFile(ftmp.name, r.getMatlab())

or easier via
r.exportToMatlab(ftmp.name)

load file
sbmlstr = te.readFromFile(ftmp.name)
print('%' + '*'*80)
print('Converted MATLAB code')
print('%' + '*'*80)
print(sbmlstr)

%**
Converted MATLAB code
%**
% How to use:
%
% __main takes 3 inputs and returns 3 outputs.
%
% [t x rInfo] = __main(tspan,solver,options)
% INPUTS:
% tspan - the time vector for the simulation. It can contain every time point,
% or just the start and end (e.g. [0 1 2 3] or [0 100]).
% solver - the function handle for the odeN solver you wish to use (e.g. @ode23s).
% options - this is the options structure returned from the MATLAB odeset
% function used for setting tolerances and other parameters for the solver.
%
% OUTPUTS:
% t - the time vector that corresponds with the solution. If tspan only contains
% the start and end times, t will contain points spaced out by the solver.
% x - the simulation results.
% rInfo - a structure containing information about the model. The fields
% within rInfo are:
% stoich - the stoichiometry matrix of the model
% floatingSpecies - a cell array containing floating species name, initial
% value, and indicator of the units being inconcentration or amount
% compartments - a cell array containing compartment names and volumes
% params - a cell array containing parameter names and values
% boundarySpecies - a cell array containing boundary species name, initial
% value, and indicator of the units being inconcentration or amount
% rateRules - a cell array containing the names of variables used in a rate rule
%
% Sample function call:
% options = odeset('RelTol',1e-12,'AbsTol',1e-9);
% [t x rInfo] = __main(linspace(0,100,100),@ode23s,options);
%
function [t x rInfo] = __main(tspan,solver,options)

% initial conditions
[x rInfo] = model();

% initial assignments

% assignment rules

(continues on next page)

140 Chapter 7. Tellurium Methods

tellurium Documentation, Release 2.1.5

(continued from previous page)

% run simulation
[t x] = feval(solver,@model,tspan,x,options);

% assignment rules

function [xdot rInfo] = model(time,x)
% x(1) S1
% x(2) S2

% List of Compartments
vol__default_compartment = 1; %default_compartment

% Global Parameters
rInfo.g_p1 = 0.1; % k1

if (nargin == 0)

% set initial conditions
xdot(1) = 10*vol__default_compartment; % S1 = S1 [Concentration]
xdot(2) = 0*vol__default_compartment; % S2 = S2 [Concentration]

% reaction info structure
rInfo.stoich = [

-1
1

];

rInfo.floatingSpecies = { % Each row: [Species Name, Initial Value,
→˓isAmount (1 for amount, 0 for concentration)]

'S1' , 10, 0
'S2' , 0, 0

};

rInfo.compartments = { % Each row: [Compartment Name, Value]
'default_compartment' , 1

};

rInfo.params = { % Each row: [Parameter Name, Value]
'k1' , 0.1

};

rInfo.boundarySpecies = { % Each row: [Species Name, Initial Value,
→˓isAmount (1 for amount, 0 for concentration)]

};

rInfo.rateRules = { % List of variables involved in a rate rule
};

else

% calculate rates of change
R0 = rInfo.g_p1*(x(1));

xdot = [
- R0
+ R0

];
(continues on next page)

7.2. Utility Methods 141

tellurium Documentation, Release 2.1.5

(continued from previous page)

end;

%listOfSupportedFunctions
function z = pow (x,y)

z = x^y;

function z = sqr (x)
z = x*x;

function z = piecewise(varargin)
numArgs = nargin;
result = 0;
foundResult = 0;
for k=1:2: numArgs-1

if varargin{k+1} == 1
result = varargin{k};
foundResult = 1;
break;

end
end
if foundResult == 0

result = varargin{numArgs};
end
z = result;

function z = gt(a,b)
if a > b

z = 1;
else

z = 0;
end

function z = lt(a,b)
if a < b

z = 1;
else

z = 0;
end

function z = geq(a,b)
if a >= b

z = 1;
else

z = 0;
end

function z = leq(a,b)
if a <= b

z = 1;
else

(continues on next page)

142 Chapter 7. Tellurium Methods

tellurium Documentation, Release 2.1.5

(continued from previous page)

z = 0;
end

function z = neq(a,b)
if a ~= b

z = 1;
else

z = 0;
end

function z = and(varargin)
result = 1;
for k=1:nargin

if varargin{k} ~= 1
result = 0;
break;

end
end
z = result;

function z = or(varargin)
result = 0;
for k=1:nargin

if varargin{k} ~= 0
result = 1;
break;

end
end
z = result;

function z = xor(varargin)
foundZero = 0;
foundOne = 0;
for k = 1:nargin

if varargin{k} == 0
foundZero = 1;

else
foundOne = 1;

end
end
if foundZero && foundOne

z = 1;
else
z = 0;

end

function z = not(a)
if a == 1

z = 0;
else

z = 1;
(continues on next page)

7.2. Utility Methods 143

tellurium Documentation, Release 2.1.5

(continued from previous page)

end

function z = root(a,b)
z = a^(1/b);

7.3 Model Loading

There are a variety of methods to load models into libRoadrunner.

tellurium.loada(ant)
Load model from Antimony string.

See also: loadAntimonyModel()

r = te.loada('S1 -> S2; k1*S1; k1=0.1; S1=10.0; S2 = 0.0')

Parameters ant (str | file) – Antimony model

Returns RoadRunner instance with model loaded

Return type roadrunner.ExtendedRoadRunner

tellurium.loadAntimonyModel(ant)
Load Antimony model with tellurium.

See also: loada()

r = te.loadAntimonyModel('S1 -> S2; k1*S1; k1=0.1; S1=10.0; S2 = 0.0')

Parameters ant (str | file) – Antimony model

Returns RoadRunner instance with model loaded

Return type roadrunner.ExtendedRoadRunner

tellurium.loadSBMLModel(sbml)
Load SBML model from a string or file.

Parameters sbml (str | file) – SBML model

Returns RoadRunner instance with model loaded

Return type roadrunner.ExtendedRoadRunner

tellurium.loadCellMLModel(cellml)
Load CellML model with tellurium.

Parameters cellml (str | file) – CellML model

Returns RoadRunner instance with model loaded

Return type roadrunner.ExtendedRoadRunner

Antimony files can be read with te.loada or te.loadAntimonyModel. For SBML te.loadSBMLModel,
for CellML te.loadCellMLModel is used. All the functions accept either model strings or respective model files.

144 Chapter 7. Tellurium Methods

tellurium Documentation, Release 2.1.5

import tellurium as te

Load an antimony model
ant_model = '''

S1 -> S2; k1*S1;
S2 -> S3; k2*S2;

k1= 0.1; k2 = 0.2;
S1 = 10; S2 = 0; S3 = 0;

'''
At the most basic level one can load the SBML model directly using libRoadRunner
print('--- load using roadrunner ---')
import roadrunner
convert to SBML model
sbml_model = te.antimonyToSBML(ant_model)
r = roadrunner.RoadRunner(sbml_model)
result = r.simulate(0, 10, 100)
r.plot(result)

The method loada is simply a shortcut to loadAntimonyModel
print('--- load using tellurium ---')
r = te.loada(ant_model)
result = r.simulate (0, 10, 100)
r.plot(result)

same like
r = te.loadAntimonyModel(ant_model)

--- load using roadrunner ---

--- load using tellurium ---

7.3. Model Loading 145

tellurium Documentation, Release 2.1.5

7.4 Interconversion Utilities

Use these routines interconvert verious standard formats

tellurium.antimonyToSBML(ant)
Convert Antimony to SBML string.

Parameters ant (str | file) – Antimony string or file

Returns SBML

Return type str

tellurium.antimonyToCellML(ant)
Convert Antimony to CellML string.

Parameters ant (str | file) – Antimony string or file

Returns CellML

Return type str

tellurium.sbmlToAntimony(sbml)
Convert SBML to antimony string.

Parameters sbml (str | file) – SBML string or file

Returns Antimony

Return type str

tellurium.sbmlToCellML(sbml)
Convert SBML to CellML string.

Parameters sbml (str | file) – SBML string or file

Returns CellML

146 Chapter 7. Tellurium Methods

tellurium Documentation, Release 2.1.5

Return type str

tellurium.cellmlToAntimony(cellml)
Convert CellML to antimony string.

Parameters cellml (str | file) – CellML string or file

Returns antimony

Return type str

tellurium.cellmlToSBML(cellml)
Convert CellML to SBML string.

Parameters cellml (str | file) – CellML string or file

Returns SBML

Return type str

Tellurium can convert between Antimony, SBML, and CellML.

import tellurium as te

antimony model
ant_model = """

S1 -> S2; k1*S1;
S2 -> S3; k2*S2;

k1= 0.1; k2 = 0.2;
S1 = 10; S2 = 0; S3 = 0;

"""

convert to SBML
sbml_model = te.antimonyToSBML(ant_model)
print('sbml_model')
print('*'*80)
print first 10 lines
for line in list(sbml_model.splitlines())[:10]:

print(line)
print('...')

convert to CellML
cellml_model = te.antimonyToCellML(ant_model)
print('cellml_model (from Antimony)')
print('*'*80)
print first 10 lines
for line in list(cellml_model.splitlines())[:10]:

print(line)
print('...')

or from the sbml
cellml_model = te.sbmlToCellML(sbml_model)
print('cellml_model (from SBML)')
print('*'*80)
print first 10 lines
for line in list(cellml_model.splitlines())[:10]:

print(line)
print('...')

sbml_model

**

7.4. Interconversion Utilities 147

tellurium Documentation, Release 2.1.5

<?xml version="1.0" encoding="UTF-8"?>
<!-- Created by libAntimony version v2.9.4 with libSBML version 5.15.0. -->
<sbml xmlns="http://www.sbml.org/sbml/level3/version1/core" level="3"

→˓version="1">
<model id="__main" name="__main">

<listOfCompartments>
<compartment sboTerm="SBO:0000410" id="default_compartment"

→˓spatialDimensions="3" size="1" constant="true"/>
</listOfCompartments>
<listOfSpecies>

<species id="S1" compartment="default_compartment"
→˓initialConcentration="10" hasOnlySubstanceUnits="false"
→˓boundaryCondition="false" constant="false"/>

<species id="S2" compartment="default_compartment"
→˓initialConcentration="0" hasOnlySubstanceUnits="false"
→˓boundaryCondition="false" constant="false"/>
...
cellml_model (from Antimony)

**
<?xml version="1.0"?>
<model xmlns:cellml="http://www.cellml.org/cellml/1.1#" xmlns="http://www.

→˓cellml.org/cellml/1.1#" name="__main">
<component name="__main">
<variable initial_value="10" name="S1" units="dimensionless"/>
<variable initial_value="0" name="S2" units="dimensionless"/>
<variable initial_value="0.1" name="k1" units="dimensionless"/>
<variable name="_J0" units="dimensionless"/>
<variable initial_value="0" name="S3" units="dimensionless"/>
<variable initial_value="0.2" name="k2" units="dimensionless"/>
<variable name="_J1" units="dimensionless"/>
...
cellml_model (from SBML)

**
<?xml version="1.0"?>
<model xmlns:cellml="http://www.cellml.org/cellml/1.1#" xmlns="http://www.

→˓cellml.org/cellml/1.1#" name="__main">
<component name="__main">
<variable initial_value="10" name="S1" units="dimensionless"/>
<variable initial_value="0" name="S2" units="dimensionless"/>
<variable initial_value="0" name="S3" units="dimensionless"/>
<variable initial_value="0.1" name="k1" units="dimensionless"/>
<variable initial_value="0.2" name="k2" units="dimensionless"/>
<variable name="_J0" units="dimensionless"/>
<variable name="_J1" units="dimensionless"/>
...

7.5 Export Utilities

Use these routines to convert the current model state into other formats, like Matlab, CellML, Antimony and SBML.

class tellurium.tellurium.ExtendedRoadRunner(*args, **kwargs)

148 Chapter 7. Tellurium Methods

http://www.sbml.org/sbml/level3/version1/core

tellurium Documentation, Release 2.1.5

exportToAntimony(filePath, current=True)
Save current model as Antimony file.

Parameters

• current (bool) – export current model state

• filePath (str) – file path of Antimony file

exportToCellML(filePath, current=True)
Save current model as CellML file.

Parameters

• current (bool) – export current model state

• filePath (str) – file path of CellML file

exportToMatlab(filePath, current=True)
Save current model as Matlab file. To save the original model loaded into roadrunner use current=False.

Parameters

• self (RoadRunner.roadrunner) – RoadRunner instance

• filePath (str) – file path of Matlab file

exportToSBML(filePath, current=True)
Save current model as SBML file.

Parameters

• current (bool) – export current model state

• filePath (str) – file path of SBML file

getAntimony(current=False)
Antimony string of the original model loaded into roadrunner.

Parameters current (bool) – return current model state

Returns Antimony

Return type str

getCellML(current=False)
CellML string of the original model loaded into roadrunner.

Parameters current (bool) – return current model state

Returns CellML string

Return type str

getCurrentAntimony()
Antimony string of the current model state.

See also: getAntimony() :returns: Antimony string :rtype: str

getCurrentCellML()
CellML string of current model state.

See also: getCellML() :returns: CellML string :rtype: str

getCurrentMatlab()
Matlab string of current model state.

Parameters current (bool) – return current model state

7.5. Export Utilities 149

tellurium Documentation, Release 2.1.5

Returns Matlab string

Return type str

getMatlab(current=False)
Matlab string of the original model loaded into roadrunner.

See also: getCurrentMatlab() :returns: Matlab string :rtype: str

Given a RoadRunner instance, you can get an SBML representation of the current state of the model using
getCurrentSBML. You can also get the initial SBML from when the model was loaded using getSBML. Finally,
exportToSBML can be used to export the current model state to a file.

import tellurium as te
import tempfile

load model
r = te.loada('S1 -> S2; k1*S1; k1 = 0.1; S1 = 10')
file for export
f_sbml = tempfile.NamedTemporaryFile(suffix=".xml")

export current model state
r.exportToSBML(f_sbml.name)

to export the initial state when the model was loaded
set the current argument to False
r.exportToSBML(f_sbml.name, current=False)

The string representations of the current model are available via
str_sbml = r.getCurrentSBML()

and of the initial state when the model was loaded via
str_sbml = r.getSBML()
print(str_sbml)

<?xml version="1.0" encoding="UTF-8"?>
<!-- Created by libAntimony version v2.9.4 with libSBML version 5.15.0. -->
<sbml xmlns="http://www.sbml.org/sbml/level3/version1/core" level="3" version="1">

<model id="__main" name="__main">
<listOfCompartments>

<compartment sboTerm="SBO:0000410" id="default_compartment" spatialDimensions="3
→˓" size="1" constant="true"/>

</listOfCompartments>
<listOfSpecies>

<species id="S1" compartment="default_compartment" initialConcentration="10"
→˓hasOnlySubstanceUnits="false" boundaryCondition="false" constant="false"/>

<species id="S2" compartment="default_compartment" hasOnlySubstanceUnits="false
→˓" boundaryCondition="false" constant="false"/>

</listOfSpecies>
<listOfParameters>

<parameter id="k1" value="0.1" constant="true"/>
</listOfParameters>
<listOfReactions>

<reaction id="_J0" reversible="true" fast="false">
<listOfReactants>
<speciesReference species="S1" stoichiometry="1" constant="true"/>

</listOfReactants>
<listOfProducts>
<speciesReference species="S2" stoichiometry="1" constant="true"/>

(continues on next page)

150 Chapter 7. Tellurium Methods

http://sys-bio.github.io/roadrunner/python_docs/index.html

tellurium Documentation, Release 2.1.5

(continued from previous page)

</listOfProducts>
<kineticLaw>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<times/>
<ci> k1 </ci>
<ci> S1 </ci>

</apply>
</math>

</kineticLaw>
</reaction>

</listOfReactions>
</model>

</sbml>

Similar to the SBML functions above, you can also use the functions getCurrentAntimony and
exportToAntimony to get or export the current Antimony representation.

import tellurium as te
import tempfile

load model
r = te.loada('S1 -> S2; k1*S1; k1 = 0.1; S1 = 10')
file for export
f_antimony = tempfile.NamedTemporaryFile(suffix=".txt")

export current model state
r.exportToAntimony(f_antimony.name)

to export the initial state when the model was loaded
set the current argument to False
r.exportToAntimony(f_antimony.name, current=False)

The string representations of the current model are available via
str_antimony = r.getCurrentAntimony()

and of the initial state when the model was loaded via
str_antimony = r.getAntimony()
print(str_antimony)

// Created by libAntimony v2.9.4
// Compartments and Species:
species S1, S2;

// Reactions:
_J0: S1 -> S2; k1*S1;

// Species initializations:
S1 = 10;
S2 = ;

// Variable initializations:
k1 = 0.1;

// Other declarations:
const k1;

7.5. Export Utilities 151

tellurium Documentation, Release 2.1.5

Tellurium also has functions for exporting the current model state to CellML. These functionalities rely on using
Antimony to perform the conversion.

import tellurium as te
import tempfile

load model
r = te.loada('S1 -> S2; k1*S1; k1 = 0.1; S1 = 10')
file for export
f_cellml = tempfile.NamedTemporaryFile(suffix=".cellml")

export current model state
r.exportToCellML(f_cellml.name)

to export the initial state when the model was loaded
set the current argument to False
r.exportToCellML(f_cellml.name, current=False)

The string representations of the current model are available via
str_cellml = r.getCurrentCellML()

and of the initial state when the model was loaded via
str_cellml = r.getCellML()
print(str_cellml)

<?xml version="1.0"?>
<model xmlns:cellml="http://www.cellml.org/cellml/1.1#" xmlns="http://www.cellml.org/
→˓cellml/1.1#" name="__main">
<component name="__main">
<variable initial_value="10" name="S1" units="dimensionless"/>
<variable name="S2" units="dimensionless"/>
<variable initial_value="0.1" name="k1" units="dimensionless"/>
<variable name="_J0" units="dimensionless"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<eq/>
<ci>_J0</ci>
<apply>
<times/>
<ci>k1</ci>
<ci>S1</ci>
</apply>
</apply>
</math>
<variable name="time" units="dimensionless"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<eq/>
<apply>
<diff/>
<bvar>
<ci>time</ci>
</bvar>
<ci>S1</ci>
</apply>
<apply>
<minus/>
<ci>_J0</ci>

(continues on next page)

152 Chapter 7. Tellurium Methods

tellurium Documentation, Release 2.1.5

(continued from previous page)

</apply>
</apply>
</math>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<eq/>
<apply>
<diff/>
<bvar>
<ci>time</ci>
</bvar>
<ci>S2</ci>
</apply>
<ci>_J0</ci>
</apply>
</math>
</component>
<group>
<relationship_ref relationship="encapsulation"/>
<component_ref component="__main"/>
</group>
</model>

To export the current model state to MATLAB, use getCurrentMatlab.

import tellurium as te
import tempfile

load model
r = te.loada('S1 -> S2; k1*S1; k1 = 0.1; S1 = 10')
file for export
f_matlab = tempfile.NamedTemporaryFile(suffix=".m")

export current model state
r.exportToMatlab(f_matlab.name)

to export the initial state when the model was loaded
set the current argument to False
r.exportToMatlab(f_matlab.name, current=False)

The string representations of the current model are available via
str_matlab = r.getCurrentMatlab()

and of the initial state when the model was loaded via
str_matlab = r.getMatlab()
print(str_matlab)

% How to use:
%
% __main takes 3 inputs and returns 3 outputs.
%
% [t x rInfo] = __main(tspan,solver,options)
% INPUTS:
% tspan - the time vector for the simulation. It can contain every time point,
% or just the start and end (e.g. [0 1 2 3] or [0 100]).
% solver - the function handle for the odeN solver you wish to use (e.g. @ode23s).

(continues on next page)

7.5. Export Utilities 153

tellurium Documentation, Release 2.1.5

(continued from previous page)

% options - this is the options structure returned from the MATLAB odeset
% function used for setting tolerances and other parameters for the solver.
%
% OUTPUTS:
% t - the time vector that corresponds with the solution. If tspan only contains
% the start and end times, t will contain points spaced out by the solver.
% x - the simulation results.
% rInfo - a structure containing information about the model. The fields
% within rInfo are:
% stoich - the stoichiometry matrix of the model
% floatingSpecies - a cell array containing floating species name, initial
% value, and indicator of the units being inconcentration or amount
% compartments - a cell array containing compartment names and volumes
% params - a cell array containing parameter names and values
% boundarySpecies - a cell array containing boundary species name, initial
% value, and indicator of the units being inconcentration or amount
% rateRules - a cell array containing the names of variables used in a rate rule
%
% Sample function call:
% options = odeset('RelTol',1e-12,'AbsTol',1e-9);
% [t x rInfo] = __main(linspace(0,100,100),@ode23s,options);
%
function [t x rInfo] = __main(tspan,solver,options)

% initial conditions
[x rInfo] = model();

% initial assignments

% assignment rules

% run simulation
[t x] = feval(solver,@model,tspan,x,options);

% assignment rules

function [xdot rInfo] = model(time,x)
% x(1) S1
% x(2) S2

% List of Compartments
vol__default_compartment = 1; %default_compartment

% Global Parameters
rInfo.g_p1 = 0.1; % k1

if (nargin == 0)

% set initial conditions
xdot(1) = 10*vol__default_compartment; % S1 = S1 [Concentration]
xdot(2) = 0*vol__default_compartment; % S2 = S2 [Concentration]

% reaction info structure
rInfo.stoich = [

-1
1

];

(continues on next page)

154 Chapter 7. Tellurium Methods

tellurium Documentation, Release 2.1.5

(continued from previous page)

rInfo.floatingSpecies = { % Each row: [Species Name, Initial Value,
→˓isAmount (1 for amount, 0 for concentration)]

'S1' , 10, 0
'S2' , 0, 0

};

rInfo.compartments = { % Each row: [Compartment Name, Value]
'default_compartment' , 1

};

rInfo.params = { % Each row: [Parameter Name, Value]
'k1' , 0.1

};

rInfo.boundarySpecies = { % Each row: [Species Name, Initial Value,
→˓isAmount (1 for amount, 0 for concentration)]

};

rInfo.rateRules = { % List of variables involved in a rate rule
};

else

% calculate rates of change
R0 = rInfo.g_p1*(x(1));

xdot = [
- R0
+ R0

];
end;

%listOfSupportedFunctions
function z = pow (x,y)

z = x^y;

function z = sqr (x)
z = x*x;

function z = piecewise(varargin)
numArgs = nargin;
result = 0;
foundResult = 0;
for k=1:2: numArgs-1

if varargin{k+1} == 1
result = varargin{k};
foundResult = 1;
break;

end
end
if foundResult == 0

result = varargin{numArgs};
end
z = result;

(continues on next page)

7.5. Export Utilities 155

tellurium Documentation, Release 2.1.5

(continued from previous page)

function z = gt(a,b)
if a > b

z = 1;
else

z = 0;
end

function z = lt(a,b)
if a < b

z = 1;
else

z = 0;
end

function z = geq(a,b)
if a >= b

z = 1;
else

z = 0;
end

function z = leq(a,b)
if a <= b

z = 1;
else

z = 0;
end

function z = neq(a,b)
if a ~= b

z = 1;
else

z = 0;
end

function z = and(varargin)
result = 1;
for k=1:nargin

if varargin{k} ~= 1
result = 0;
break;

end
end
z = result;

function z = or(varargin)
result = 0;
for k=1:nargin

if varargin{k} ~= 0
(continues on next page)

156 Chapter 7. Tellurium Methods

tellurium Documentation, Release 2.1.5

(continued from previous page)

result = 1;
break;

end
end
z = result;

function z = xor(varargin)
foundZero = 0;
foundOne = 0;
for k = 1:nargin

if varargin{k} == 0
foundZero = 1;

else
foundOne = 1;

end
end
if foundZero && foundOne

z = 1;
else
z = 0;

end

function z = not(a)
if a == 1

z = 0;
else

z = 1;
end

function z = root(a,b)
z = a^(1/b);

The above examples rely on Antimony as in intermediary between formats. You can use this functionality directly
using e.g. antimony.getCellMLString. A comprehensive set of functions can be found in the Antimony API
documentation.

import antimony
antimony.loadAntimonyString('''S1 -> S2; k1*S1; k1 = 0.1; S1 = 10''')
ant_str = antimony.getCellMLString(antimony.getMainModuleName())
print(ant_str)

<?xml version="1.0"?>
<model xmlns:cellml="http://www.cellml.org/cellml/1.1#" xmlns="http://www.cellml.org/
→˓cellml/1.1#" name="__main">
<component name="__main">
<variable initial_value="10" name="S1" units="dimensionless"/>
<variable name="S2" units="dimensionless"/>
<variable initial_value="0.1" name="k1" units="dimensionless"/>
<variable name="_J0" units="dimensionless"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<eq/>

(continues on next page)

7.5. Export Utilities 157

http://antimony.sourceforge.net/antimony__api_8h.html
http://antimony.sourceforge.net/antimony__api_8h.html

tellurium Documentation, Release 2.1.5

(continued from previous page)

<ci>_J0</ci>
<apply>
<times/>
<ci>k1</ci>
<ci>S1</ci>
</apply>
</apply>
</math>
<variable name="time" units="dimensionless"/>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<eq/>
<apply>
<diff/>
<bvar>
<ci>time</ci>
</bvar>
<ci>S1</ci>
</apply>
<apply>
<minus/>
<ci>_J0</ci>
</apply>
</apply>
</math>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<eq/>
<apply>
<diff/>
<bvar>
<ci>time</ci>
</bvar>
<ci>S2</ci>
</apply>
<ci>_J0</ci>
</apply>
</math>
</component>
<group>
<relationship_ref relationship="encapsulation"/>
<component_ref component="__main"/>
</group>
</model>

7.6 Stochastic Simulation

Use these routines to carry out Gillespie style stochastic simulations.

class tellurium.tellurium.ExtendedRoadRunner(*args, **kwargs)

getSeed(integratorName=’gillespie’)
Current seed used by the integrator with integratorName. Defaults to the seed of the gillespie integrator.

158 Chapter 7. Tellurium Methods

tellurium Documentation, Release 2.1.5

Parameters integratorName (str) – name of the integrator for which the seed should be
retured

Returns current seed

Return type float

gillespie(*args, **kwargs)
Run a Gillespie stochastic simulation.

Sets the integrator to gillespie and performs simulation.

rr = te.loada ('S1 -> S2; k1*S1; k1 = 0.1; S1 = 40')
Simulate from time zero to 40 time units using variable step sizes (classic
→˓Gillespie)
result = rr.gillespie (0, 40)
Simulate on a grid with 10 points from start 0 to end time 40
rr.reset()
result = rr.gillespie (0, 40, 10)
Simulate from time zero to 40 time units using variable step sizes with
→˓given selection list
This means that the first column will be time and the second column species
→˓S1
rr.reset()
result = rr.gillespie (0, 40, selections=['time', 'S1'])
Simulate on a grid with 20 points from time zero to 40 time units
using the given selection list
rr.reset()
result = rr.gillespie (0, 40, 20, ['time', 'S1'])
rr.plot(result)

Parameters

• seed (int) – seed for gillespie

• args – parameters for simulate

• kwargs – parameters for simulate

Returns simulation results

setSeed(seed, integratorName=’gillespie’)
Set seed in integrator with integratorName. Defaults to the seed of the gillespie integrator.

Raises Error if integrator does not have key ‘seed’.

Parameters

• seed – seed to set

• integratorName (str) – name of the integrator for which the seed should be retured

Stochastic simulations can be run by changing the current integrator type to ‘gillespie’ or by using the r.gillespie
function.

import tellurium as te
import numpy as np

r = te.loada('S1 -> S2; k1*S1; k1 = 0.1; S1 = 40')
r.integrator = 'gillespie'
r.integrator.seed = 1234

(continues on next page)

7.6. Stochastic Simulation 159

tellurium Documentation, Release 2.1.5

(continued from previous page)

results = []
for k in range(1, 50):

r.reset()
s = r.simulate(0, 40)
results.append(s)
r.plot(s, show=False, alpha=0.7)

te.show()

Setting the identical seed for all repeats results in identical traces in each simulation.

results = []
for k in range(1, 20):

r.reset()
r.setSeed(123456)
s = r.simulate(0, 40)
results.append(s)
r.plot(s, show=False, loc=None, color='black', alpha=0.7)

te.show()

160 Chapter 7. Tellurium Methods

tellurium Documentation, Release 2.1.5

You can combine two timecourse simulations and change e.g. parameter values in between each simulation. The
gillespie method simulates up to the given end time 10, after which you can make arbitrary changes to the model,
then simulate again.

When using the r.plot function, you can pass the parameter labels, which controls the names that will be used
in the figure legend, and tag, which ensures that traces with the same tag will be drawn with the same color (each
species within each trace will be plotted in its own color, but these colors will match trace to trace).

import tellurium as te

r = te.loada('S1 -> S2; k1*S1; k1 = 0.02; S1 = 100')
r.setSeed(1234)
for k in range(1, 20):

r.resetToOrigin()
res1 = r.gillespie(0, 10)
r.plot(res1, show=False) # plot first half of data

change in parameter after the first half of the simulation
We could have also used an Event in the antimony model,
which are described further in the Antimony Reference section
r.k1 = r.k1*20
res2 = r.gillespie (10, 20)

r.plot(res2, show=False) # plot second half of data

te.show()

7.6. Stochastic Simulation 161

tellurium Documentation, Release 2.1.5

7.7 Math

Use these routines to perform various calculations.

tellurium.getEigenvalues(m)
Eigenvalues of matrix.

Convenience method for computing the eigenvalues of a matrix m Uses numpy eig to compute the eigenvalues.

Parameters m – numpy array

Returns numpy array containing eigenvalues

tellurium.rank(A, atol=1e-13, rtol=0)
Estimate the rank (i.e. the dimension of the columnspace) of a matrix.

The algorithm used by this function is based on the singular value decomposition of A.

A [ndarray] A should be at most 2-D. A 1-D array with length n will be treated as a 2-D with shape (1, n)

atol [float] The absolute tolerance for a zero singular value. Singular values smaller than atol are considered to
be zero.

rtol [float] The relative tolerance. Singular values less than rtol*smax are considered to be zero, where smax is
the largest singular value.

If both atol and rtol are positive, the combined tolerance is the maximum of the two; that is:

tol = max(atol, rtol * smax)

Singular values smaller than tol are considered to be zero.

162 Chapter 7. Tellurium Methods

tellurium Documentation, Release 2.1.5

r [int] The estimated rank of the matrix.

numpy.linalg.matrix_rank matrix_rank is basically the same as this function, but it does not provide the option
of the absolute tolerance.

tellurium.nullspace(A, atol=1e-13, rtol=0)
Compute an approximate basis for the nullspace of A.

The algorithm used by this function is based on the singular value decomposition of A.

A [ndarray] A should be at most 2-D. A 1-D array with length k will be treated as a 2-D with shape (1, k)

atol [float] The absolute tolerance for a zero singular value. Singular values smaller than atol are considered to
be zero.

rtol [float] The relative tolerance. Singular values less than rtol*smax are considered to be zero, where smax is
the largest singular value.

If both atol and rtol are positive, the combined tolerance is the maximum of the two; that is:

tol = max(atol, rtol * smax)

Singular values smaller than tol are considered to be zero.

ns [ndarray] If A is an array with shape (m, k), then ns will be an array with shape (k, n), where n is the
estimated dimension of the nullspace of A. The columns of ns are a basis for the nullspace; each element
in numpy.dot(A, ns) will be approximately zero.

tellurium.rref(A)
Compute the reduced row echelon for the matrix A. Returns returns a tuple of two elements. The first is the
reduced row echelon form, and the second is a list of indices of the pivot columns.

7.8 ODE Extraction Methods

Routines to extract ODEs.

tellurium.getODEsFromSBMLFile(fileName)
Given a SBML file name, this function returns the model as a string of rules and ODEs

>>> te.getODEsFromSBMLFile ('mymodel.xml')

tellurium.getODEsFromSBMLString(sbmlStr)
Given a SBML string this fucntion returns the model as a string of rules and ODEs

>>> te.getODEsFromSBMLString (sbmlStr)

tellurium.getODEsFromModel(roadrunnerModel)
Given a roadrunner instance this function returns a string of rules and ODEs

>>> r = te.loada ('S1 -> S2; k1*S1; k1=1')
>>> te.getODEsFromModel (r)

7.9 Plotting

Tellurium has a plotting engine which can target either Plotly (when used in a notebook environment) or Matplotlib.
To specify which engine to use, use te.setDefaultPlottingEngine().

7.8. ODE Extraction Methods 163

tellurium Documentation, Release 2.1.5

tellurium.plot(x, y, show=True, **kwargs)
Create a 2D scatter plot.

Parameters

• x – A numpy array describing the X datapoints. Should have the same number of rows as y.

• y – A numpy array describing the Y datapoints. Should have the same number of rows as x.

• tag – A tag so that all traces of the same type are plotted using same color/label (for e.g.
multiple stochastic traces).

• tags – Like tag, but for multiple traces.

• name – The name of the trace.

• label – The name of the trace.

• names – Like name, but for multiple traces to appear in the legend.

• labels – The name of the trace.

• alpha – Floating point representing the opacity ranging from 0 (transparent) to 1 (opaque).

• show – show=True (default) shows the plot, use show=False to plot multiple simulations in
one plot

• showlegend – Whether to show the legend or not.

• mode – Can be set to ‘markers’ to generate scatter plots, or ‘dash’ for dashed lines.

import numpy as np, tellurium as te
result = np.array([[1,2,3,4], [7.2,6.5,8.8,10.5], [9.8, 6.5, 4.3,3.0]])
te.plot(result[:,0], result[:,1], name='Second column', show=False)
te.plot(result[:,0], result[:,2], name='Third column', show=False)
te.show(reset=False) # does not reset the plot after showing plot
te.plot(result[:,0], result[:,3], name='Fourth column', show=False)
te.show()

NOTE: When loading a model with r = te.loada(‘antimony_string’) and calling r.plot(), it is the below tel-
lerium.ExtendedRoadRunner.plot() method below that is called not te.plot().

tellurium.plotArray(result, loc=’upper right’, show=True, resetColorCycle=True, xlabel=None, yla-
bel=None, title=None, xlim=None, ylim=None, xscale=’linear’, yscale=’linear’,
grid=False, labels=None, **kwargs)

Plot an array.

Parameters

• result – Array to plot, first column of the array must be the x-axis and remaining columns
the y-axis

• loc (str) – Location of legend box. Valid strings ‘best’ | upper right’ | ‘upper left’ | ‘lower
left’ | ‘lower right’ | ‘right’ | ‘center left’ | ‘center right’ | ‘lower center’ | ‘upper center’ |
‘center’ |

• color (str) – ‘red’, ‘blue’, etc. to use the same color for every curve

• labels – A list of labels for the legend, include as many labels as there are curves to plot

• xlabel (str) – x-axis label

• ylabel (str) – y-axis label

• title (str) – Add plot title

164 Chapter 7. Tellurium Methods

tellurium Documentation, Release 2.1.5

• xlim – Limits on x-axis (tuple [start, end])

• ylim – Limits on y-axis

• xscale – ‘linear’ or ‘log’ scale for x-axis

• yscale – ‘linear’ or ‘log’ scale for y-axis

• grid (bool) – Show grid

• show – show=True (default) shows the plot, use show=False to plot multiple simulations in
one plot

• resetColorCycle (bool) – If true, resets color cycle on given figure (works with
show=False to plot multiple simulations on a single plot)

• kwargs – Additional matplotlib keywords like linewidth, linestyle. . .

import numpy as np, tellurium as te
result = np.array([[1,2,3], [7.2,6.5,8.8], [9.8, 6.5, 4.3]])
te.plotArray(result, title="My graph", xlim=((1, 5)), labels=["Label 1", "Label 2
→˓"],

yscale='log', linestyle='dashed')

The function tellurium.plotArray assumes that the first column in the array is the x-axis and the second and subsequent
columns represent curves on the y-axis.

class tellurium.tellurium.ExtendedRoadRunner(*args, **kwargs)

draw(**kwargs)
Draws an SBMLDiagram of the current model.

To set the width of the output plot provide the ‘width’ argument. Species are drawn as white circles
(boundary species shaded in blue), reactions as grey squares. Currently only the drawing of medium-size
networks is supported.

plot(result=None, show=True, xtitle=None, ytitle=None, title=None, linewidth=2, xlim=None,
ylim=None, logx=False, logy=False, xscale=’linear’, yscale=’linear’, grid=False, ordi-
nates=None, tag=None, labels=None, figsize=(6, 4), savefig=None, dpi=80, alpha=1.0,
**kwargs)

Plot roadrunner simulation data.

Plot is called with simulation data to plot as the first argument. If no data is provided the data currently
held by roadrunner generated in the last simulation is used. The first column is considered the x axis and
all remaining columns the y axis. If the result array has no names, then the current r.selections are used for
naming. In this case the dimension of the r.selections has to be the same like the number of columns of the
result array.

Curves are plotted in order of selection (columns in result).

In addition to the listed keywords plot supports all matplotlib.pyplot.plot keyword arguments, like color,
alpha, linewidth, linestyle, marker, . . .

sbml = te.getTestModel('feedback.xml')
r = te.loadSBMLModel(sbml)
s = r.simulate(0, 100, 201)
r.plot(s, loc="upper right", linewidth=2.0, lineStyle='-', marker='o',
→˓markersize=2.0,

alpha=0.8, title="Feedback Oscillation", xlabel="time", ylabel=
→˓"concentration",

xlim=[0,100], ylim=[-1, 4])

7.9. Plotting 165

tellurium Documentation, Release 2.1.5

Parameters

• result – results data to plot (numpy array)

• show (bool) – show=True (default) shows the plot, use show=False to plot multiple
simulations in one plot

• xtitle (str) – x-axis label

• xlabel (str) – x-axis label (same as xtitle)

• ytitle (str) – y-axis label

• ylabel (str) – y-axis label (same as ytitle)

• title (str) – plot title

• linewidth (float) – linewidth of the plot

• xlim – limits on x-axis (tuple [start, end])

• ylim – limits on y-axis

• logx (bool) – use log scale for x-axis

• logy (bool) – use log scale for y-axis

• xscale – ‘linear’ or ‘log’ scale for x-axis

• yscale – ‘linear’ or ‘log’ scale for y-axis

• grid (bool) – show grid

• ordinates – If supplied, only these selections will be plotted (see RoadRunner selec-
tions)

• tag – If supplied, all traces with the same tag will be plotted with the same color/style

• labels – ‘id’ to use species IDs

• figsize – If supplied, customize the size of the figure (width,height)

• savefig (str) – If supplied, saves the figure to specified location

• dpi (int) – Change the dpi of the saved figure

• alpha (float) – Change the alpha value of the figure

• kwargs – additional matplotlib keywords like marker, lineStyle, . . .

NOTE: When loading a model with r = te.loada(‘antimony_string’) and calling r.plot(), it is the above tel-
lerium.ExtendedRoadRunner.plot() method below that is called not te.plot().

7.9.1 Add plot elements

Example showing how to embelish a graph - change title, axes labels, set axis limit. Example also uses an event to
pulse S1.

import tellurium as te, roadrunner

r = te.loada ('''
$Xo -> S1; k1*Xo;
S1 -> $X1; k2*S1;

(continues on next page)

166 Chapter 7. Tellurium Methods

tellurium Documentation, Release 2.1.5

(continued from previous page)

k1 = 0.2; k2 = 0.4; Xo = 1; S1 = 0.5;
at (time > 20): S1 = S1 + 0.35

''')

Simulate the first part up to 20 time units
m = r.simulate (0, 50, 100, ["time", "S1"])

using latex syntax to
→˓render math
r.plot(m, ylim=(0.,1.), xtitle='Time', ytitle='Concentration', title='My First Plot (
→˓$y = x^2$)')

7.9.2 Saving plots

To save a plot, use r.plot and the savefig parameter. Use dpi to specify image quality. Pass in the save location
along with the image name.

import tellurium as te, os
r = te.loada('S1 -> S2; k1*S1; k1 = 0.1; S1 = 10')
result = r.simulate(0, 50, 100)
currentDir = os.getcwd() # gets the current directory
r.plot(title='My plot', xtitle='Time', ytitle='Concentration', dpi=150,

savefig=currentDir + '\\test.png') # save image to current directory as "test.
→˓png"

The path can be specified as a written out string. The plot can also be saved as a pdf instead of png.

savefig='C:\\Tellurium-Winpython-3.6\\settings\\.spyder-py3\\test.pdf'

7.9. Plotting 167

tellurium Documentation, Release 2.1.5

7.9.3 Logarithmic axis

The axis scale can be adapted with the xscale and yscale settings.

import tellurium as te

r = te.loadTestModel('feedback.xml')
r.integrator.variable_step_size = True
s = r.simulate(0, 50)
r.plot(s, logx=True, xlim=[10E-4, 10E2],

title="Logarithmic x-Axis with grid", ylabel="concentration");

7.9.4 Plotting multiple simulations

All plotting is done via the r.plot or te.plotArray functions. To plot multiple curves in one figure use the
show=False setting.

import tellurium as te

import numpy as np
import matplotlib.pylab as plt

Load a model and carry out a simulation generating 100 points
r = te.loada ('S1 -> S2; k1*S1; k1 = 0.1; S1 = 10')
r.draw(width=100)

get colormap
Colormap instances are used to convert data values (floats) from the interval [0, 1]
cmap = plt.get_cmap('Blues')

k1_values = np.linspace(start=0.1, stop=1.5, num=15)

(continues on next page)

168 Chapter 7. Tellurium Methods

tellurium Documentation, Release 2.1.5

(continued from previous page)

max_k1 = max(k1_values)
for k, value in enumerate(k1_values):

r.reset()
r.k1 = value
s = r.simulate(0, 30, 100)

color = cmap((value+max_k1)/(2*max_k1))
use show=False to plot multiple curves in the same figure
r.plot(s, show=False, title="Parameter variation k1", xtitle="time", ytitle=

→˓"concentration",
xlim=[-1, 31], ylim=[-0.1, 11])

te.show()

print('Reference Simulation: k1 = {}'.format(r.k1))
print('Parameter variation: k1 = {}'.format(k1_values))

7.9. Plotting 169

tellurium Documentation, Release 2.1.5

Reference Simulation: k1 = 1.5
Parameter variation: k1 = [0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1. 1.1 1.2 1.3 1.4 1.
→˓5]

7.9.5 Using Tags and Names

Tags can be used to coordinate the color, opacity, and legend names between several sets of data. This can be used to
highlight certain features that these datasets have in common. Names allow you to give a more meaningful description
of the data in the legend.

import tellurium as te
import numpy as np

for i in range(1, 10):
x = np.linspace(0, 10, num = 10)
y = i*x**2 + 10*i

if i % 2 == 0:
next_tag = "positive slope"

else:
next_tag = "negative slope"
y = -1*y

next_name = next_tag + " (i = " + str(i) + ")"
te.plot(x, y, show = False, tag = next_tag, name = next_name)

te.show()

170 Chapter 7. Tellurium Methods

tellurium Documentation, Release 2.1.5

Note that only two items show up in the legend, one for each tag used. In this case, the name found in the legend will
match the name of the last set of data plotted using that specific tag. The color and opacity for each tagged groups will
also be chosen from the last dataset inputted with that given tag.

7.9.6 Subplots

te.plotArray can be used in conjunction with matplotlib functions to create subplots.

import tellurium as te
import numpy as np
import matplotlib.pylab as plt

r = te.loada ('S1 -> S2; k1*S1; k1 = 0.1; S1 = 20')
r.setIntegrator('gillespie')
r.integrator.seed = '1234'
kValues = np.linspace(0.1, 0.9, num=9) # generate k1 values

plt.gcf().set_size_inches(10, 10) # size of figure
plt.subplots_adjust(wspace=0.4, hspace=0.4) # adjust the space between subplots
plt.suptitle('Variation in k1 value', fontsize=16) # main title

for i in range(1, len(kValues) + 1):
r.k1 = kValues[i - 1]
designates number of subplots (row, col) and spot to plot next
plt.subplot(3, 3, i)
for j in range(1, 30):

r.reset()
s = r.simulate(0, 10)

(continues on next page)

7.9. Plotting 171

tellurium Documentation, Release 2.1.5

(continued from previous page)

t = "k1 = " + '{:.1f}'.format(kValues[i - 1])
plot each subplot, use show=False to save multiple traces
te.plotArray(s, show=False, title=t, xlabel='Time',

ylabel='Concentration', alpha=0.7)

7.9.7 External Plotting

For those more familiar with plotting in Python, other libraries such as matplotlib.pylab offer a wider range of
plotting options. To use these external libraries, extract the simulation timecourse data returned from r.simulate.

172 Chapter 7. Tellurium Methods

tellurium Documentation, Release 2.1.5

Data is returned in the form of a dictionary/NamedArray, so specific elements can easily be extracted using the species
name as the key.

import tellurium as te
import matplotlib.pylab as plt

antimonyString = ('''
model feedback()
// Reactions:
J0: Nan1 + Mol -> Nan1Mol; (K1*Nan1*Mol);
J1: Nan1Mol -> Nan1 + Mol; (K_1*Nan1Mol);
J2: Nan1Mol + Nan2 -> Nan1MolNan2; (K2*Nan1Mol*Nan2)
J3: Nan1MolNan2 + GeneOff -> GeneOn; (K3*Nan1MolNan2*GeneOff);
J4: GeneOn -> Nan1MolNan2 + GeneOff; (K_3*GeneOn);

// Species initializations:
Nan1 = 0.0001692; Mol = 0.0001692/2; Nan2 = 0.0001692; Nan1Mol = 0;
Nan1MolNan2 = 0; GeneOff = 5*10^-5; GeneOn = 0;

// Variable initialization:
K1 = 6.1*10^5; K_1 = 8*10^-5; K2 = 3.3*10^5; K_2 = 5.7*10^-8; K3 = 1*10^5; K_3 = 0;
end''')

r = te.loada(antimonyString)
results = r.simulate(0,0.5,1000)
r.plot()

plt.figure(figsize=(30,10));
plt.rc('font', size=30);

plt.subplot(1,2,1);
plt.plot(results['time'], results['[Nan2]'], 'r', results['time'], results[
→˓'[Nan1MolNan2]'], 'b');
plt.legend({'Nan2', 'Nan1MolNan2'});

plt.subplot(1,2,2);
plt.plot(results['time'], results['[GeneOff]'], 'r', results['time'], results[
→˓'[GeneOn]'], 'b');
plt.legend({'GeneOff', 'GeneOn'});

7.9. Plotting 173

tellurium Documentation, Release 2.1.5

Note that we can extract all the time course data for a specific species such as Nan2 by calling
results['[Nan2]']. The extract brackets [] around Nan2 may or may not be required depending on if the
units are in terms of concentration or just a count. To check, simply print out results and you can see the names of
each species.

7.9.8 Draw diagram

This example shows how to draw a network diagram, requires graphviz.

import tellurium as te

r = te.loada('''
model feedback()

// Reactions:http://localhost:8888/notebooks/core/tellurium_export.ipynb#
J0: $X0 -> S1; (VM1 * (X0 - S1/Keq1))/(1 + X0 + S1 + S4^h);
J1: S1 -> S2; (10 * S1 - 2 * S2) / (1 + S1 + S2);
J2: S2 -> S3; (10 * S2 - 2 * S3) / (1 + S2 + S3);
J3: S3 -> S4; (10 * S3 - 2 * S4) / (1 + S3 + S4);
J4: S4 -> $X1; (V4 * S4) / (KS4 + S4);

// Species initializations:
S1 = 0; S2 = 0; S3 = 0;
S4 = 0; X0 = 10; X1 = 0;

// Variable initialization:

(continues on next page)

174 Chapter 7. Tellurium Methods

http://tellurium.readthedocs.io/en/latest/notebooks.html#preliminaries

tellurium Documentation, Release 2.1.5

(continued from previous page)

VM1 = 10; Keq1 = 10; h = 10; V4 = 2.5; KS4 = 0.5;
end''')

simulate using variable step size
r.integrator.setValue('variable_step_size', True)
s = r.simulate(0, 50)
draw the diagram
r.draw(width=200)
and the plot
r.plot(s, title="Feedback Oscillations", ylabel="concentration", alpha=0.9);

7.9. Plotting 175

tellurium Documentation, Release 2.1.5

176 Chapter 7. Tellurium Methods

tellurium Documentation, Release 2.1.5

7.9.9 Parameter Scans

To study the consequences of varying a specific parameter value or initial concentration on a simulation, iteratively
adjust the given parameter over a range of values of interest and re-run the simulation. Using the show parameter and
te.show we can plot all these simulations on a single figure.

import tellurium as te
import roadrunner
import numpy as np

r = te.loada("""
$Xo -> A; k1*Xo;
A -> B; kf*A - kr*B;
B -> ; k2*B;

Xo = 5
k1 = 0.1; k2 = 0.5;
kf = 0.3; kr = 0.4

""")

for Xo in np.arange(1.0, 10, 1):
r.reset()
r.Xo = Xo
m = r.simulate (0, 50, 100, ['time', 'A'])
te.plotArray (m, show=False, labels=['Xo='+str(Xo)], resetColorCycle=False)

te.show()

7.9. Plotting 177

tellurium Documentation, Release 2.1.5

7.9.10 Parameter Uncertainty Modeling

In most systems, some parameters are more sensitve to perturbations than others. When studying these systems, it
is important to understand which parameters are highly sensitive, as errors (i.e. measurement error) introduced to
these variables can create drastic differences between experimental and simulated results. To study the sensitivity of
these parameters, we can sweep over a range of values as we did in the parameter scan example above. These ranges
represent our uncertainty in the value of the parameter, and those parameters that create highly variable results in some
measure of an output variable are deemed to be sensitive.

import numpy as np
import tellurium as te
import roadrunner
import antimony
import matplotlib.pyplot as plt
import math

antimonyString = ('''
model feedback()

// Reactions:
J0: Nan1 + Mol -> Nan1Mol; (K1*Nan1*Mol);
J1: Nan1Mol -> Nan1 + Mol; (K_1*Nan1Mol);
J2: Nan1Mol + Nan2 -> Nan1MolNan2; (K2*Nan1Mol*Nan2)
J3: Nan1MolNan2 + GeneOff -> GeneOn; (K3*Nan1MolNan2*GeneOff);
J4: GeneOn -> Nan1MolNan2 + GeneOff; (K_3*GeneOn);

// Species initializations:
Nan1 = 0.0001692; Mol = 0.0001692/2; Nan2 = 0.0001692; Nan1Mol = 0;
Nan1MolNan2 = 0; GeneOff = 5*10^-5; GeneOn = 0;

// Variable initialization:
K1 = 6.1*10^5; K_1 = 8*10^-5; K2 = 3.3*10^5; K_2 = 5.7*10^-8; K3 = 1*10^5; K_3 = 0;

end''')

(continues on next page)

178 Chapter 7. Tellurium Methods

tellurium Documentation, Release 2.1.5

(continued from previous page)

r = te.loada (model.antimonyString)

def plot_param_uncertainty(model, startVal, name, num_sims):
stdDev = 0.6

assumes initial parameter estimate as mean and iterates 60% above and below.
vals = np.linspace((1-stdDev)*startVal, (1+stdDev)*startVal, 100)
for val in vals:

r.resetToOrigin()
exec("r.%s = %f" % (name, val))
result = r.simulate(0,0.5,1000, selections = ['time', 'GeneOn'])
plt.plot(result[:,0],result[:,1])
plt.title("uncertainty in " + name)

plt.legend(["GeneOn"])
plt.xlabel("Time (hours)")
plt.ylabel("Concentration")

startVals = r.getGlobalParameterValues();
names = list(enumerate([x for x in r.getGlobalParameterIds() if ("K" in x or "k" in
→˓x)]));

n = len(names) + 1;
dim = math.ceil(math.sqrt(n))
for i,next_param in enumerate(names):

plt.subplot(dim,dim,i+1)
plot_param_uncertainty(r, startVals[next_param[0]], next_param[1], 100)

plt.tight_layout()
plt.show()

In the above code, the exec command is used to set the model parameters to their given value (i.e. r.K1 = 1.5)
and the code sweeps through all the given parameters of interests (names). Above, we see that the K3 parameter
produces the widest distribution of outcomes, and is thus the most sensitive under the given model, taking into account
its assumptions and approximate parameter values. On the other hand, variations in K_1, K1, and K_3 seem to have
very little effect on the outcome of the system.

7.9. Plotting 179

tellurium Documentation, Release 2.1.5

7.10 Model Reset

The reset function of a RoadRunner instance reset the system variables (usually species concentrations) to their
respective initial values. resetAll resets variables to their CURRENT initial as well as resets parameters.
resetToOrigin completely resets the model.

import tellurium as te

r = te.loada ('S1 -> S2; k1*S1; k1 = 0.1; S1 = 10')
r.integrator.setValue('variable_step_size', True)

simulate model
sim1 = r.simulate(0, 5)
print('*** sim1 ***')
r.plot(sim1)

continue from end concentration of sim1
r.k1 = 2.0
sim2 = r.simulate(0, 5)
print('-- sim2 --')
print('continue simulation from final concentrations with changed parameter')
r.plot(sim2)

Reset initial concentrations, does not affect the changed parameter
r.reset()
sim3 = r.simulate(0, 5)
print('-- sim3 --')
print('reset initial concentrations but keep changed parameter')
r.plot(sim3)

Change CURRENT initial of k1, resetAll clears parameter but
resets to CURRENT initial
r.setValue('init(k1)', 0.3)
r.resetAll()
sim4 = r.simulate(0, 5)
print('-- sim4 --')
print('reset to CURRENT initial of k1, reset to initial parameters')
print('k1 = ' + str(r.k1))
r.plot(sim4)

Reset model to the state it was loaded
r.resetToOrigin()
sim5 = r.simulate(0, 5)
print('-- sim5 --')
print('reset all to origin')
r.plot(sim5);

* sim1 *

180 Chapter 7. Tellurium Methods

https://libroadrunner.readthedocs.io/en/latest/api_reference.html?highlight=reset#RoadRunner.RoadRunner.reset

tellurium Documentation, Release 2.1.5

-- sim2 --
continue simulation from final concentrations with changed parameter

-- sim3 --
reset initial concentrations but keep changed parameter

7.10. Model Reset 181

tellurium Documentation, Release 2.1.5

-- sim4 --
reset to CURRENT initial of k1, reset to initial parameters
k1 = 0.3

-- sim5 --
reset all to origin

182 Chapter 7. Tellurium Methods

tellurium Documentation, Release 2.1.5

7.11 jarnac Short-cuts

Routines to support the Jarnac compatibility layer

class tellurium.tellurium.ExtendedRoadRunner(*args, **kwargs)

bs()
ExecutableModel.getBoundarySpeciesIds()

Returns a vector of boundary species Ids.

Parameters index (numpy.ndarray) – (optional) an index array indicating which items to
return.

Returns a list of boundary species ids.

dv()
RoadRunner::getRatesOfChange()

Returns the rates of change of all floating species. The order of species is given by the order of Ids returned
by getFloatingSpeciesIds()

Returns a named array of floating species rates of change.

Return type numpy.ndarray

fjac()
RoadRunner.getFullJacobian()

Compute the full Jacobian at the current operating point.

This is the Jacobian of ONLY the floating species.

fs()
ExecutableModel.getFloatingSpeciesIds()

7.11. jarnac Short-cuts 183

tellurium Documentation, Release 2.1.5

Return a list of floating species sbml ids.

ps()
ExecutableModel.getGlobalParameterIds([index])

Return a list of global parameter ids.

Returns a list of global parameter ids.

rs()
ExecutableModel.getReactionIds()

Returns a vector of reaction Ids.

Parameters index (numpy.ndarray) – (optional) an index array indicating which items to
return.

Returns a list of reaction ids.

rv()
ExecutableModel.getReactionRates([index])

Returns a vector of reaction rates (reaction velocity) for the current state of the model. The order of
reaction rates is given by the order of Ids returned by getReactionIds()

Parameters index (numpy.ndarray) – (optional) an index array indicating which items to
return.

Returns an array of reaction rates.

Return type numpy.ndarray

sm()
RoadRunner.getFullStoichiometryMatrix()

Get the stoichiometry matrix that coresponds to the full model, even it it was converted via conservation
conversion.

sv()
ExecutableModel.getFloatingSpeciesConcentrations([index])

Returns a vector of floating species concentrations. The order of species is given by the order of Ids
returned by getFloatingSpeciesIds()

Parameters index (numpy.ndarray) – (optional) an index array indicating which items to
return.

Returns an array of floating species concentrations.

Return type numpy.ndarray

vs()
ExecutableModel.getCompartmentIds([index])

Returns a vector of compartment identifier symbols.

Parameters index (None or numpy.ndarray) – A array of compartment indices indi-
cating which compartment ids to return.

Returns a list of compartment ids.

7.12 Test Models

RoadRunner has built into it a number of predefined models that can be use to easily try and test tellurium.

184 Chapter 7. Tellurium Methods

tellurium Documentation, Release 2.1.5

tellurium.loadTestModel(string)
Loads particular test model into roadrunner.

rr = te.loadTestModel('feedback.xml')

Returns RoadRunner instance with test model loaded

tellurium.getTestModel(string)
SBML of given test model as a string.

load test model as SBML
sbml = te.getTestModel('feedback.xml')
r = te.loadSBMLModel(sbml)
simulate
r.simulate(0, 100, 20)

Returns SBML string of test model

tellurium.listTestModels()
List roadrunner SBML test models.

print(te.listTestModels())

Returns list of test model paths

7.12.1 Test models

import tellurium as te

To get the builtin models use listTestModels
print(te.listTestModels())

['EcoliCore.xml', 'linearPathwayClosed.xml', 'test_1.xml', 'linearPathwayOpen.xml',
→˓'feedback.xml']

Load test model

To load one of the test models use loadTestModel:
r = te.loadTestModel('feedback.xml')
result = r.simulate (0, 10, 100)
r.plot (result)

If you need to obtain the SBML for the test model, use getTestModel
sbml = te.getTestModel('feedback.xml')

To look at one of the test model in Antimony form:
ant = te.sbmlToAntimony(te.getTestModel('feedback.xml'))
print(ant)

7.12. Test Models 185

tellurium Documentation, Release 2.1.5

// Created by libAntimony v2.9.4
model *feedback()

// Compartments and Species:
compartment compartment_;
species S1 in compartment_, S2 in compartment_, S3 in compartment_, S4 in

→˓compartment_;
species $X0 in compartment_, $X1 in compartment_;

// Reactions:
J0: $X0 => S1; J0_VM1*(X0 - S1/J0_Keq1)/(1 + X0 + S1 + S4^J0_h);
J1: S1 => S2; (10*S1 - 2*S2)/(1 + S1 + S2);
J2: S2 => S3; (10*S2 - 2*S3)/(1 + S2 + S3);
J3: S3 => S4; (10*S3 - 2*S4)/(1 + S3 + S4);
J4: S4 => $X1; J4_V4*S4/(J4_KS4 + S4);

// Species initializations:
S1 = 0;
S2 = 0;
S3 = 0;
S4 = 0;
X0 = 10;
X1 = 0;

// Compartment initializations:
compartment_ = 1;

// Variable initializations:
J0_VM1 = 10;
J0_Keq1 = 10;
J0_h = 10;
J4_V4 = 2.5;
J4_KS4 = 0.5;

// Other declarations:
const compartment_, J0_VM1, J0_Keq1, J0_h, J4_V4, J4_KS4;

end

7.13 Running external tools

Routines to run external tools.

tellurium.runTool(toolFileName)
Call an external application called toolFileName. Note that .exe extension may be omitted for windows appli-
cations.

Include any arguments in arguments parameter.

Example: returnString = te.runTool ([‘myplugin’, ‘arg1’, ‘arg2’])

If the external tool writes to stdout, this will be captured and returned.

Parameters toolFileName – argument to external tool

Returns String return by external tool, if any.

186 Chapter 7. Tellurium Methods

tellurium Documentation, Release 2.1.5

7.14 Model Methods

Routines flattened from model, saves typing and easier for finding the methods

class tellurium.tellurium.ExtendedRoadRunner(*args, **kwargs)

getBoundarySpeciesConcentrations([index])
Returns a vector of boundary species concentrations. The order of species is given by the order of Ids
returned by getBoundarySpeciesIds()

Parameters index (numpy.ndarray) – (optional) an index array indicating which items to
return.

Returns an array of the boundary species concentrations.

Return type numpy.ndarray.

given by the order of Ids returned by getBoundarySpeciesIds()

Parameters index (numpy.ndarray) – (optional) an index array indicating which items to
return.

Returns an array of the boundary species concentrations.

Return type numpy.ndarray.

getBoundarySpeciesIds()
Returns a vector of boundary species Ids.

Parameters index (numpy.ndarray) – (optional) an index array indicating which items to
return.

Returns a list of boundary species ids.

getCompartmentIds([index])
Returns a vector of compartment identifier symbols.

Parameters index (None or numpy.ndarray) – A array of compartment indices indi-
cating which compartment ids to return.

Returns a list of compartment ids.

getCompartmentVolumes([index])
Returns a vector of compartment volumes. The order of volumes is given by the order of Ids returned by
getCompartmentIds()

Parameters index (numpy.ndarray) – (optional) an index array indicating which items to
return.

Returns an array of compartment volumes.

Return type numpy.ndarray.

getConservedMoietyValues([index])
Returns a vector of conserved moiety volumes. The order of values is given by the order of Ids returned
by getConservedMoietyIds()

Parameters index (numpy.ndarray) – (optional) an index array indicating which items to
return.

Returns an array of conserved moiety values.

Return type numpy.ndarray.

7.14. Model Methods 187

tellurium Documentation, Release 2.1.5

getFloatingSpeciesConcentrations([index])
Returns a vector of floating species concentrations. The order of species is given by the order of Ids
returned by getFloatingSpeciesIds()

Parameters index (numpy.ndarray) – (optional) an index array indicating which items to
return.

Returns an array of floating species concentrations.

Return type numpy.ndarray

getFloatingSpeciesIds()
Return a list of floating species sbml ids.

getGlobalParameterIds([index])
Return a list of global parameter ids.

Returns a list of global parameter ids.

getGlobalParameterValues([index])
Return a vector of global parameter values. The order of species is given by the order of Ids returned by
getGlobalParameterIds()

Parameters index (numpy.ndarray) – (optional) an index array indicating which items to
return.

Returns an array of global parameter values.

Return type numpy.ndarray.

getNumBoundarySpecies()
Returns the number of boundary species in the model.

getNumCompartments()
Returns the number of compartments in the model.

Return type int

getNumConservedMoieties()
Returns the number of conserved moieties in the model.

Return type int

getNumFloatingSpecies()
Returns the number of floating species in the model.

getNumGlobalParameters()
Returns the number of global parameters in the model.

getNumReactions()
Returns the number of reactions in the model.

getRatesOfChange()
Returns the rates of change of all floating species. The order of species is given by the order of Ids returned
by getFloatingSpeciesIds()

Returns a named array of floating species rates of change.

Return type numpy.ndarray

getReactionIds()
Returns a vector of reaction Ids.

Parameters index (numpy.ndarray) – (optional) an index array indicating which items to
return.

188 Chapter 7. Tellurium Methods

tellurium Documentation, Release 2.1.5

Returns a list of reaction ids.

getReactionRates([index])
Returns a vector of reaction rates (reaction velocity) for the current state of the model. The order of
reaction rates is given by the order of Ids returned by getReactionIds()

Parameters index (numpy.ndarray) – (optional) an index array indicating which items to
return.

Returns an array of reaction rates.

Return type numpy.ndarray

7.14. Model Methods 189

tellurium Documentation, Release 2.1.5

190 Chapter 7. Tellurium Methods

CHAPTER 8

API

Main tellurium entry point.

The module tellurium provides support routines. As part of this module an ExendedRoadRunner class is defined which
provides helper methods for model export, plotting or the Jarnac compatibility layer.

tellurium.tellurium.DumpJSONInfo()
Tellurium dist info. Goes into COMBINE archive.

tellurium.tellurium.VersionDict()
Return dict of version strings.

tellurium.tellurium.addFileToCombineArchive(archive_path, file_name, entry_location,
file_format, master, out_archive_path)

Add a file to an existing COMBINE archive on disk and save the result as a new archive.

Parameters

• archive_path – The path to the archive.

• file_name – The name of the file to add.

• entry_location – The location to store the entry in the archive.

• file_format – The format of the file. Can use tecombine.KnownFormats.lookupFormat
for common formats.

• master – Whether the file should be marked master.

• out_archive_path – The path to the output archive.

tellurium.tellurium.addFilesToCombineArchive(archive_path, file_names, entry_locations,
file_formats, master_attributes,
out_archive_path)

Add multiple files to an existing COMBINE archive on disk and save the result as a new archive.

Parameters

• archive_path – The path to the archive.

• file_names – List of extra files to add.

191

tellurium Documentation, Release 2.1.5

• entry_locations – List of destination locations for the files in the output archive.

• file_format – List of formats for the resp. files.

• master_attributes – List of true/false values for the resp. master attributes of the
files.

• out_archive_path – The path to the output archive.

tellurium.tellurium.antimonyToCellML(ant)
Convert Antimony to CellML string.

Parameters ant (str | file) – Antimony string or file

Returns CellML

Return type str

tellurium.tellurium.antimonyToSBML(ant)
Convert Antimony to SBML string.

Parameters ant (str | file) – Antimony string or file

Returns SBML

Return type str

tellurium.tellurium.cellmlToAntimony(cellml)
Convert CellML to antimony string.

Parameters cellml (str | file) – CellML string or file

Returns antimony

Return type str

tellurium.tellurium.cellmlToSBML(cellml)
Convert CellML to SBML string.

Parameters cellml (str | file) – CellML string or file

Returns SBML

Return type str

tellurium.tellurium.colorCycle(color, polyNumber)
Adjusts contents of self.color as needed for plotting methods.

tellurium.tellurium.convertAndExecuteCombineArchive(location)
Read and execute a COMBINE archive.

Parameters location – Filesystem path to the archive.

tellurium.tellurium.convertCombineArchive(location)
Read a COMBINE archive and convert its contents to an inline Omex.

Parameters location – Filesystem path to the archive.

tellurium.tellurium.createCombineArchive(archive_path, file_names, entry_locations,
file_formats, master_attributes, descrip-
tion=None)

Create a new COMBINE archive containing the provided entries and locations.

Parameters

• archive_path – The path to the archive.

• file_names – List of extra files to add.

192 Chapter 8. API

tellurium Documentation, Release 2.1.5

• entry_locations – List of destination locations for the files in the output archive.

• file_format – List of formats for the resp. files.

• master_attributes – List of true/false values for the resp. master attributes of the
files.

• out_archive_path – The path to the output archive.

• description – A libcombine description structure to be assigned to the combine archive,
if desired.

tellurium.tellurium.executeInlineOmex(inline_omex, comp=False)
Execute inline phrasedml and antimony.

Parameters inline_omex – String containing inline phrasedml and antimony.

tellurium.tellurium.executeInlineOmexFromFile(filepath)
Execute inline OMEX with simulations described in phrasedml and models described in antimony.

Parameters filepath – Path to file containing inline phrasedml and antimony.

tellurium.tellurium.exportInlineOmex(inline_omex, export_location)
Export an inline OMEX string to a COMBINE archive.

Parameters

• inline_omex – String containing inline OMEX describing models and simulations.

• export_location – Filepath of Combine archive to create.

tellurium.tellurium.extractFileFromCombineArchive(archive_path, entry_location)
Extract a single file from a COMBINE archive and return it as a string.

tellurium.tellurium.getDefaultPlottingEngine()
Get the default plotting engine. Options are ‘matplotlib’ or ‘plotly’. :return:

tellurium.tellurium.getEigenvalues(m)
Eigenvalues of matrix.

Convenience method for computing the eigenvalues of a matrix m Uses numpy eig to compute the eigenvalues.

Parameters m – numpy array

Returns numpy array containing eigenvalues

tellurium.tellurium.getLastReport()
Get the last report generated by SED-ML.

tellurium.tellurium.getTelluriumVersion()
Version number of tellurium.

Returns version

Return type str

tellurium.tellurium.getTestModel(string)
SBML of given test model as a string.

load test model as SBML
sbml = te.getTestModel('feedback.xml')
r = te.loadSBMLModel(sbml)
simulate
r.simulate(0, 100, 20)

Returns SBML string of test model

193

tellurium Documentation, Release 2.1.5

tellurium.tellurium.getVersionInfo()
Returns version information for tellurium included packages.

Returns list of tuples (package, version)

tellurium.tellurium.inIPython()
Checks if tellurium is used in IPython.

Returns true if tellurium is being using in an IPython environment, false otherwise. :return: boolean

tellurium.tellurium.listTestModels()
List roadrunner SBML test models.

print(te.listTestModels())

Returns list of test model paths

tellurium.tellurium.loadAntimonyModel(ant)
Load Antimony model with tellurium.

See also: loada()

r = te.loadAntimonyModel('S1 -> S2; k1*S1; k1=0.1; S1=10.0; S2 = 0.0')

Parameters ant (str | file) – Antimony model

Returns RoadRunner instance with model loaded

Return type roadrunner.ExtendedRoadRunner

tellurium.tellurium.loadCellMLModel(cellml)
Load CellML model with tellurium.

Parameters cellml (str | file) – CellML model

Returns RoadRunner instance with model loaded

Return type roadrunner.ExtendedRoadRunner

tellurium.tellurium.loadSBMLModel(sbml)
Load SBML model from a string or file.

Parameters sbml (str | file) – SBML model

Returns RoadRunner instance with model loaded

Return type roadrunner.ExtendedRoadRunner

tellurium.tellurium.loadTestModel(string)
Loads particular test model into roadrunner.

rr = te.loadTestModel('feedback.xml')

Returns RoadRunner instance with test model loaded

tellurium.tellurium.loada(ant)
Load model from Antimony string.

See also: loadAntimonyModel()

194 Chapter 8. API

tellurium Documentation, Release 2.1.5

r = te.loada('S1 -> S2; k1*S1; k1=0.1; S1=10.0; S2 = 0.0')

Parameters ant (str | file) – Antimony model

Returns RoadRunner instance with model loaded

Return type roadrunner.ExtendedRoadRunner

tellurium.tellurium.loads(ant)
Load SBML model with tellurium

See also: loadSBMLModel()

Parameters ant (str | file) – SBML model

Returns RoadRunner instance with model loaded

Return type roadrunner.ExtendedRoadRunner

tellurium.tellurium.model(model_name)
Retrieve a model which has already been loaded.

Parameters model_name (str) – the name of the model

tellurium.tellurium.noticesOff()
Switch off the generation of notices to the user. Call this to stop roadrunner from printing warning message to
the console.

See also noticesOn()

tellurium.tellurium.noticesOn()
Switch on notice generation to the user.

See also noticesOff()

tellurium.tellurium.plotArray(result, loc=’upper right’, show=True, resetColorCycle=True,
xlabel=None, ylabel=None, title=None, xlim=None, ylim=None,
xscale=’linear’, yscale=’linear’, grid=False, labels=None,
**kwargs)

Plot an array.

Parameters

• result – Array to plot, first column of the array must be the x-axis and remaining columns
the y-axis

• loc (str) – Location of legend box. Valid strings ‘best’ | upper right’ | ‘upper left’ | ‘lower
left’ | ‘lower right’ | ‘right’ | ‘center left’ | ‘center right’ | ‘lower center’ | ‘upper center’ |
‘center’ |

• color (str) – ‘red’, ‘blue’, etc. to use the same color for every curve

• labels – A list of labels for the legend, include as many labels as there are curves to plot

• xlabel (str) – x-axis label

• ylabel (str) – y-axis label

• title (str) – Add plot title

• xlim – Limits on x-axis (tuple [start, end])

• ylim – Limits on y-axis

• xscale – ‘linear’ or ‘log’ scale for x-axis

195

tellurium Documentation, Release 2.1.5

• yscale – ‘linear’ or ‘log’ scale for y-axis

• grid (bool) – Show grid

• show – show=True (default) shows the plot, use show=False to plot multiple simulations in
one plot

• resetColorCycle (bool) – If true, resets color cycle on given figure (works with
show=False to plot multiple simulations on a single plot)

• kwargs – Additional matplotlib keywords like linewidth, linestyle. . .

import numpy as np, tellurium as te
result = np.array([[1,2,3], [7.2,6.5,8.8], [9.8, 6.5, 4.3]])
te.plotArray(result, title="My graph", xlim=((1, 5)), labels=["Label 1", "Label 2
→˓"],

yscale='log', linestyle='dashed')

tellurium.tellurium.plotWithLegend(r, result=None, loc=’upper right’, show=True)
Plot an array and include a legend. The first argument must be a roadrunner variable. The second argument
must be an array containing data to plot. The first column of the array will be the x-axis and remaining columns
the y-axis. Returns a handle to the plotting object.

plotWithLegend (r)

tellurium.tellurium.printVersionInfo()
Prints version information for tellurium included packages.

see also: getVersionInfo()

tellurium.tellurium.sbmlToAntimony(sbml)
Convert SBML to antimony string.

Parameters sbml (str | file) – SBML string or file

Returns Antimony

Return type str

tellurium.tellurium.sbmlToCellML(sbml)
Convert SBML to CellML string.

Parameters sbml (str | file) – SBML string or file

Returns CellML

Return type str

tellurium.tellurium.setDefaultPlottingEngine(engine)
Set the default plotting engine. Overrides current value.

Parameters engine – A string describing which plotting engine to use. Valid values are ‘mat-
plotlib’ and ‘plotly’.

tellurium.tellurium.setLastReport(report)
Used by SED-ML to save the last report created (for validation).

tellurium.tellurium.setSavePlotsToPDF(value)
Sets whether plots should be saved to PDF.

196 Chapter 8. API

CHAPTER 9

Appendix

9.1 Source Code Repositories

Tellurium is a collection of Python packages developed inside and outside our group, including simulators, libraries
for reading and writing standards like SBML and SED-ML, and various utilities (e.g. sbml2matlab). Tellurium itself is
a Python module that provides integration between these various subpackages and its source code is hosted on GitHub.
A list of constituent packages and repositories is given below:

• tellurium: This project.

• libroadrunner: SBML ODE / stochastic simulator.

• antimony: A human-readable representation of SBML.

• phrasedml: A human-readable representation of SED-ML.

• libcombine: A library for reading/writing COMBINE archives.

• sbml2matlab: A utility for converting SBML models to MATLAB ODE simulations.

• simplesbml: A utility for creating SBML models without the complexity of libSBML.

• libsbml: A library for reading/writing SBML.

• libsedml: A library for reading/writing SED-ML.

9.2 License

The Tellurium source code is licensed under the Apache License 2.0. Tellurium uses third-party dependencies which
may be licensed under different terms. Consult the documentation for the respective third-party packages for more
details.

197

https://github.com/stanleygu/sbml2matlab
https://github.com/sys-bio/tellurium
https://github.com/sys-bio/tellurium
https://github.com/sys-bio/roadrunner
http://antimony.sourceforge.net/
http://phrasedml.sourceforge.net/
https://github.com/sbmlteam/libCombine
https://github.com/stanleygu/sbml2matlab
http://sys-bio.github.io/simplesbml/
https://sourceforge.net/projects/sbml
http://sbml.org/Main_Page
https://github.com/fbergmann/libSEDML
https://github.com/sys-bio/tellurium

tellurium Documentation, Release 2.1.5

9.3 Contact

• For questions about Tellurium, please visit our tellurium-discuss Google group.

• For new feature requests or to report bugs, see Tellurium on GitHub. and create an issue.

9.4 Funding

The Tellurium project is funded by generous support from NIH/NIGMS grant GM081070. The content is solely the
responsibility of the authors and does not necessarily represent the views of the National Institutes of Health.

9.5 Acknowledgments

Tellurium relies on many great open-source projects, including the Spyder IDE, nteract, Python, numpy, Jupyter,
CVODE, NLEQ, AUTO2000, LAPACK, LLVM, and the POCO libraries. Tellurium also relies on open source con-
tributions from Frank Bergmann (libStruct, libSEDML), Mike Hucka, Sarah Keating (libSBML), and Pierre Raybaut.

198 Chapter 9. Appendix

https://groups.google.com/forum/?utm_medium=email&utm_source=footer#!forum/tellurium-discuss
https://github.com/sys-bio/tellurium/issues/
https://www.spyder-ide.org/
https://github.com/nteract/nteract
https://www.python.org/
http://www.numpy.org/
http://jupyter.org/
http://www.netlib.org/lapack/
https://llvm.org/
https://pocoproject.org/
https://github.com/fbergmann/libSEDML
https://sourceforge.net/projects/sbml

CHAPTER 10

Indices and tables

• genindex

• modindex

• search

199

tellurium Documentation, Release 2.1.5

200 Chapter 10. Indices and tables

Index

A
addFilesToCombineArchive() (in module tel-

lurium.tellurium), 191
addFileToCombineArchive() (in module tel-

lurium.tellurium), 191
antimonyToCellML() (in module tellurium), 146
antimonyToCellML() (in module tel-

lurium.tellurium), 192
antimonyToSBML() (in module tellurium), 146
antimonyToSBML() (in module tellurium.tellurium),

192

B
bs() (tellurium.tellurium.ExtendedRoadRunner

method), 183

C
cellmlToAntimony() (in module tellurium), 147
cellmlToAntimony() (in module tel-

lurium.tellurium), 192
cellmlToSBML() (in module tellurium), 147
cellmlToSBML() (in module tellurium.tellurium), 192
colorCycle() (in module tellurium.tellurium), 192
convertAndExecuteCombineArchive() (in

module tellurium.tellurium), 192
convertCombineArchive() (in module tellurium),

54
convertCombineArchive() (in module tel-

lurium.tellurium), 192
createCombineArchive() (in module tel-

lurium.tellurium), 192

D
draw() (tellurium.tellurium.ExtendedRoadRunner

method), 165
DumpJSONInfo() (in module tellurium.tellurium), 191
dv() (tellurium.tellurium.ExtendedRoadRunner

method), 183

E
executeInlineOmex() (in module tellurium), 54
executeInlineOmex() (in module tel-

lurium.tellurium), 193
executeInlineOmexFromFile() (in module tel-

lurium.tellurium), 193
exportInlineOmex() (in module tellurium), 54
exportInlineOmex() (in module tel-

lurium.tellurium), 193
exportToAntimony() (tel-

lurium.tellurium.ExtendedRoadRunner
method), 148

exportToCellML() (tel-
lurium.tellurium.ExtendedRoadRunner
method), 149

exportToMatlab() (tel-
lurium.tellurium.ExtendedRoadRunner
method), 149

exportToSBML() (tel-
lurium.tellurium.ExtendedRoadRunner
method), 149

ExtendedRoadRunner (class in tellurium.tellurium),
148, 158, 165, 183, 187

extractFileFromCombineArchive() (in mod-
ule tellurium), 54

extractFileFromCombineArchive() (in mod-
ule tellurium.tellurium), 193

F
fjac() (tellurium.tellurium.ExtendedRoadRunner

method), 183
fs() (tellurium.tellurium.ExtendedRoadRunner

method), 183

G
getAntimony() (tel-

lurium.tellurium.ExtendedRoadRunner
method), 149

getBoundarySpeciesConcentrations()

201

tellurium Documentation, Release 2.1.5

(tellurium.tellurium.ExtendedRoadRunner
method), 187

getBoundarySpeciesIds() (tel-
lurium.tellurium.ExtendedRoadRunner
method), 187

getCellML() (tellurium.tellurium.ExtendedRoadRunner
method), 149

getCompartmentIds() (tel-
lurium.tellurium.ExtendedRoadRunner
method), 187

getCompartmentVolumes() (tel-
lurium.tellurium.ExtendedRoadRunner
method), 187

getConservedMoietyValues() (tel-
lurium.tellurium.ExtendedRoadRunner
method), 187

getCurrentAntimony() (tel-
lurium.tellurium.ExtendedRoadRunner
method), 149

getCurrentCellML() (tel-
lurium.tellurium.ExtendedRoadRunner
method), 149

getCurrentMatlab() (tel-
lurium.tellurium.ExtendedRoadRunner
method), 149

getDefaultPlottingEngine() (in module tel-
lurium.tellurium), 193

getEigenvalues() (in module tellurium), 162
getEigenvalues() (in module tellurium.tellurium),

193
getFloatingSpeciesConcentrations()

(tellurium.tellurium.ExtendedRoadRunner
method), 187

getFloatingSpeciesIds() (tel-
lurium.tellurium.ExtendedRoadRunner
method), 188

getGlobalParameterIds() (tel-
lurium.tellurium.ExtendedRoadRunner
method), 188

getGlobalParameterValues() (tel-
lurium.tellurium.ExtendedRoadRunner
method), 188

getLastReport() (in module tellurium.tellurium),
193

getMatlab() (tellurium.tellurium.ExtendedRoadRunner
method), 150

getNumBoundarySpecies() (tel-
lurium.tellurium.ExtendedRoadRunner
method), 188

getNumCompartments() (tel-
lurium.tellurium.ExtendedRoadRunner
method), 188

getNumConservedMoieties() (tel-
lurium.tellurium.ExtendedRoadRunner

method), 188
getNumFloatingSpecies() (tel-

lurium.tellurium.ExtendedRoadRunner
method), 188

getNumGlobalParameters() (tel-
lurium.tellurium.ExtendedRoadRunner
method), 188

getNumReactions() (tel-
lurium.tellurium.ExtendedRoadRunner
method), 188

getODEsFromModel() (in module tellurium), 163
getODEsFromSBMLFile() (in module tellurium),

163
getODEsFromSBMLString() (in module tellurium),

163
getRatesOfChange() (tel-

lurium.tellurium.ExtendedRoadRunner
method), 188

getReactionIds() (tel-
lurium.tellurium.ExtendedRoadRunner
method), 188

getReactionRates() (tel-
lurium.tellurium.ExtendedRoadRunner
method), 189

getSeed() (tellurium.tellurium.ExtendedRoadRunner
method), 158

getTelluriumVersion() (in module tellurium),
138

getTelluriumVersion() (in module tel-
lurium.tellurium), 193

getTestModel() (in module tellurium), 185
getTestModel() (in module tellurium.tellurium), 193
getVersionInfo() (in module tellurium), 138
getVersionInfo() (in module tellurium.tellurium),

194
gillespie() (tellurium.tellurium.ExtendedRoadRunner

method), 159

I
inIPython() (in module tellurium.tellurium), 194
installPackage() (in module tellurium), 137

L
listTestModels() (in module tellurium), 185
listTestModels() (in module tellurium.tellurium),

194
loada() (in module tellurium), 144
loada() (in module tellurium.tellurium), 194
loadAntimonyModel() (in module tellurium), 144
loadAntimonyModel() (in module tel-

lurium.tellurium), 194
loadCellMLModel() (in module tellurium), 144
loadCellMLModel() (in module tel-

lurium.tellurium), 194

202 Index

tellurium Documentation, Release 2.1.5

loads() (in module tellurium.tellurium), 195
loadSBMLModel() (in module tellurium), 144
loadSBMLModel() (in module tellurium.tellurium),

194
loadTestModel() (in module tellurium), 184
loadTestModel() (in module tellurium.tellurium),

194

M
model() (in module tellurium.tellurium), 195

N
noticesOff() (in module tellurium), 138
noticesOff() (in module tellurium.tellurium), 195
noticesOn() (in module tellurium), 138
noticesOn() (in module tellurium.tellurium), 195
nullspace() (in module tellurium), 163

P
plot() (in module tellurium), 163
plot() (tellurium.tellurium.ExtendedRoadRunner

method), 165
plotArray() (in module tellurium), 164
plotArray() (in module tellurium.tellurium), 195
plotWithLegend() (in module tellurium.tellurium),

196
printVersionInfo() (in module tellurium), 138
printVersionInfo() (in module tel-

lurium.tellurium), 196
ps() (tellurium.tellurium.ExtendedRoadRunner

method), 184

R
rank() (in module tellurium), 162
readFromFile() (in module tellurium), 138
rref() (in module tellurium), 163
rs() (tellurium.tellurium.ExtendedRoadRunner

method), 184
runTool() (in module tellurium), 186
rv() (tellurium.tellurium.ExtendedRoadRunner

method), 184

S
saveToFile() (in module tellurium), 138
sbmlToAntimony() (in module tellurium), 146
sbmlToAntimony() (in module tellurium.tellurium),

196
sbmlToCellML() (in module tellurium), 146
sbmlToCellML() (in module tellurium.tellurium), 196
searchPackage() (in module tellurium), 137
setDefaultPlottingEngine() (in module tel-

lurium.tellurium), 196
setLastReport() (in module tellurium.tellurium),

196

setSavePlotsToPDF() (in module tel-
lurium.tellurium), 196

setSeed() (tellurium.tellurium.ExtendedRoadRunner
method), 159

sm() (tellurium.tellurium.ExtendedRoadRunner
method), 184

sv() (tellurium.tellurium.ExtendedRoadRunner
method), 184

T
tellurium.tellurium (module), 191

U
uninstallPackage() (in module tellurium), 137
upgradePackage() (in module tellurium), 137

V
VersionDict() (in module tellurium.tellurium), 191
vs() (tellurium.tellurium.ExtendedRoadRunner

method), 184

Index 203

	Installation and Front-ends
	Installation Options

	Quick Start
	Simple Example
	More Complex Example

	Walkthrough
	Notebook Walkthrough
	Advanced Topics
	Notebook Troubleshooting
	Further Reading
	IDE Walkthrough
	Advanced Topics on Tellurium Spyder
	Tellurium Spyder Troubleshooting
	Further Reading
	Additional Resources for Tellurium
	Learning Python

	Usage Examples
	Basics
	Models & Model Building
	Simulation and Analysis Methods
	SED-ML
	COMBINE & Inline OMEX
	Modeling Case Studies
	Miscellaneous

	Antimony Reference
	Background
	Change Log
	Contents
	Introduction & Basics
	Examples
	Simulating Models
	Language Reference

	Parameter Scan
	Loading a Model
	Class Methods
	Example
	Properties
	SteadyStateScan

	Tellurium Methods
	Installing Packages
	Utility Methods
	Model Loading
	Interconversion Utilities
	Export Utilities
	Stochastic Simulation
	Math
	ODE Extraction Methods
	Plotting
	Model Reset
	jarnac Short-cuts
	Test Models
	Running external tools
	Model Methods

	API
	Appendix
	Source Code Repositories
	License
	Contact
	Funding
	Acknowledgments

	Indices and tables
	Index

